Reclaimed water irrigation: Accumulation of contaminants of emerging concern in food crops

Author(s):  
Laura Ponce Robles ◽  
Daniel Bañón Gómez ◽  
Antonio José García García ◽  
Francisco Pedrero Salcedo ◽  
Pedro Antonio Nortes Tortosa ◽  
...  

<p>Irrigated agriculture is a predominant economic activity in many areas of the Mediterranean region.  However, water scarcity and restrictions on the use of fresh water resources in high agricultural production regions, endangers sustainable agricultural development.  So, alternative water resources are necessary.</p><p>The use of reclaimed water for agriculture irrigation makes available a low-cost water source, providing an additional source of nutrients for the plants, helping to reduce the amount and costs associated with the consumption of synthetic fertilizers in agriculture. However, this practice is not a remedy for water scarcity free of disadvantages. Among them, the presence of contaminants of emerging concern (CECs) is one of the most worrying to the scientific community. The problem with these compounds is that they are not completely removed during wastewater treatment, which makes their long-term consequences unpredictable. On the other hand, the absorption and bioaccumulation of CECs in food crops is a matter still to be clarified.</p><p>In this work, the absorption capacity, accumulation and persistence of a selected group of CECs in real crops (baby lettuce) irrigated with reclaimed water from a WWTP were evaluated. Results showed different behaviors depending on CECs properties and concentrations, indicating a progressive accumulation when the culture time increased. So, the chemical quality of reclaimed water is a key issue in safe agricultural irrigation.</p>

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 520 ◽  
Author(s):  
Zenaida Chitu ◽  
Fausto Tomei ◽  
Giulia Villani ◽  
Alessandro Di Felice ◽  
Giovanni Zampelli ◽  
...  

In recent decades, water scarcity has become a frequent and widespread phenomenon. Intensification of water scarcity will have economic impact on the main water-using sectors. The highest pressure on the water resources is exerted by agriculture. Irrigation is the largest consumer of the agriculture sector and the efficient use of water is of utmost importance. The aim of this study is to explore the capability of an innovative platform that combines Earth Observation data, weather forecasts and numerical simulations to plan more precisely water allocation in space and time in the irrigated agriculture. This platform, created in the framework of MOSES, provides in Romania short-term irrigation forecasts adapted to the hydrological behavior of alluvial soils specific to the Lower Danube Floodplain. The short-term irrigation forecasts have been tested with applied water volumes and in situ water resources measurements in order to assess the water allocation in the irrigated agriculture. Although irrigation forecast was run operationally only one crop year (2017–2018), in the framework of MOSES Project, the comparison revealed that the irrigation scheduling in this area is more influenced by the infrastructure characteristics and less by the spatial distribution of crop water needs and availability of water resources. Our results show that short-term irrigation forecasts accompanied by real time monitoring of water resources could be successfully used in the irrigation scheduling activity for improving water allocation in space and time in the irrigated agriculture.


2015 ◽  
Vol 34 (10) ◽  
pp. 2213-2221 ◽  
Author(s):  
Katherine C. Hyland ◽  
Andrea C. Blaine ◽  
Eric R.V. Dickenson ◽  
Christopher P. Higgins

Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1140 ◽  
Author(s):  
Camila Dalla Porta Mattiuzi ◽  
Guilherme Fernandes Marques ◽  
Josué Medellín-Azuara

The lack of adequate management programs alongside water resources overexploitation have led to undesirable effects such as water shortages and economic losses in several regions. Optimized water allocation strategies using groundwater and surface water resources could reduce water scarcity and scarcity costs by exploring the advantages and peculiarities of each source, thus reducing the effect of variability and uncertainties on water availability. The aim of this study is to assess economic water allocation and the potential of conjunctive use of surface water and groundwater operations using a hydro-economic model to evaluate scarcity and scarcity cost at an irrigated agricultural region in Southern Brazil. Results indicated the possibility to reduce but not entirely eliminate, water scarcity and scarcity cost based solely on the reallocation of water among users and crops, without generating water deficit to users downstream. Results also pointed to the elevated potential of groundwater use as a component to reduce scarcity and its costs, mainly through economic optimized strategies integrated with surface water.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3260
Author(s):  
Yanbing Chi ◽  
Qiang Zheng ◽  
Peiling Yang ◽  
Shumei Ren ◽  
Ning Ma

Reclaimed water is an alternative water source which could alleviate the shortage of water resources in agricultural systems. Many researchers have studied the effect of reclaimed water on soil environment, crop yield, etc. However, carbon sequestration in reclaimed water irrigated agricultural systems is less studied. This study investigates methane uptake and photosynthesis in reclaimed water irrigation systems contributing to carbon sequestration estimation and analyzes the important factors impacting them. The results show that CH4 uptake is related to soil water-filled pore space (WFPS) with a quadratic and it has the highest uptake when WFPS is between 40 and 50%. Long-term reclaimed water irrigation could significantly decrease (p < 0.05) CH4 uptake and macroaggregate stability in the topsoil. However, reclaimed water had no significant impact on photosynthesis in comparison. The type of fertilizer is an important factor which impacts CH4 emission from soil; urea had a lower CH4 uptake and a higher CO2 emission than slow-released fertilizer. Overall, reclaimed water irrigation could effectively decrease soil carbon sequestration. A soil wetted proportion level of 40–50% was recommended in this study for favorable methane oxidation. Slow-released fertilizer in reclaimed water irrigated agriculture could better control soil carbon emission and soil carbon absorption.


1996 ◽  
Vol 33 (10-11) ◽  
pp. 37-43 ◽  
Author(s):  
John M. Anderson

Australia is a relatively dry continent with an average runoff of 50 mm per year. The use of water resources in some river basins is approaching the limits of sustainability. Some adverse environmental impacts have been observed resulting from water diversions and from both reclaimed water and stormwater discharges. The paper describes current water recycling initiatives in Australia. These include: beneficial reuse of reclaimed water for urban, residential, industrial and agricultural purposes; recycling of greywater and stormwater; advanced treatment using membrane technology; and water efficient urban design. Some possible water recycling scenarios for Australia in the 21st century are examined. The implications of these scenarios are discussed.


2021 ◽  
pp. 096466392110316
Author(s):  
Chloé Nicolas-Artero

This article shows how geo-legal devices created to deal with environmental crisis situations make access to drinking water precarious and contribute to the overexploitation and contamination of water resources. It relies on qualitative methods (interviews, observations, archive work) to identify and analyse two geo-legal devices applied in the case study of the Elqui Valley in Chile. The first device, generated by the Declaration of Water Scarcity, allows private sanitation companies to concentrate water rights and extend their supply network, thus producing an overexploitation of water resources. In the context of mining pollution, the second device is structured around the implementation of the Rural Drinking Water Programme and the distribution of water by tankers, which has made access to drinking water more precarious for the population and does nothing to prevent pollution.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 351
Author(s):  
Bernardo Martin-Gorriz ◽  
Victoriano Martínez-Alvarez ◽  
José Francisco Maestre-Valero ◽  
Belén Gallego-Elvira

Curbing greenhouse gas (GHG) emissions to combat climate change is a major global challenge. Although irrigated agriculture consumes considerable energy that generates GHG emissions, the biomass produced also represents an important CO2 sink, which can counterbalance the emissions. The source of the water supply considerably influences the irrigation energy consumption and, consequently, the resulting carbon footprint. This study evaluates the potential impact on the carbon footprint of partially and fully replacing the conventional supply from Tagus–Segura water transfer (TSWT) with desalinated seawater (DSW) in the irrigation districts of the Segura River basin (south-eastern Spain). The results provide evidence that the crop GHG emissions depend largely on the water source and, consequently, its carbon footprint. In this sense, in the hypothetical scenario of the TSWT being completely replaced with DSW, GHG emissions may increase by up to 50% and the carbon balance could be reduced by 41%. However, even in this unfavourable situation, irrigated agriculture in the study area could still act as a CO2 sink with a negative total and specific carbon balance of −707,276 t CO2/year and −8.10 t CO2/ha-year, respectively. This study provides significant policy implications for understanding the water–energy–food nexus in water-scarce regions.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jing Wu ◽  
Baona Ren ◽  
Haohong Pi ◽  
Xin Zhao ◽  
Miaomiao Hu ◽  
...  

Fresh water scarcity becomes a crisis to human survival and development. Atmospheric water capture with remarkable advantages such as energy-independence, low-cost, etc., has been supposed as a promising way to...


Author(s):  
Romesh Kumar Salgotra ◽  
Rafiq Ahmad Bhat ◽  
Deyue Yu ◽  
Javaid Akhter Bhat

Abstract: Over the past two decades, the advances in the next generation sequencing (NGS) platforms have led to the identification of numerous genes/QTLs at high-resolution for their potential use in crop improvement. The genomic resources generated through these high-throughput sequencing techniques have been efficiently used in screening of particular gene of interest particularly for numerous types of plant stresses and quality traits. Subsequently, the identified-markers linked to a particular trait have been used in marker-assisted backcross breeding (MABB) activities. Besides, these markers are also being used to catalogue the food crops for detection of adulteration to improve the quality of food. With the advancement of technologies, the genomic resources are originating with new markers; however, to use these markers efficiently in crop breeding, high-throughput techniques (HTT) such as multiplex PCR and capillary electrophoresis (CE) can be exploited. Robustness, ease of operation, good reproducibility and low cost are the main advantages of multiplex PCR and CE. The CE is capable of separating and characterizing proteins with simplicity, speed and small sample requirements. Keeping in view the availability of vast data generated through NGS techniques and development of numerous markers, there is a need to use these resources efficiently in crop improvement programmes. In summary, this review describes the use of molecular markers in the screening of resistance genes in breeding programmes and detection of adulterations in food crops using high-throughput techniques.


Sign in / Sign up

Export Citation Format

Share Document