Optimal CSEM survey design for CO2 monitoring at Smeaheia offshore Norway

Author(s):  
Peder Eliasson ◽  
Anouar Romdhane ◽  
Romina Gehrmann ◽  
Joonsang Park ◽  
Hanbo Chen

<p>Geophysical monitoring is essential for CO<sub>2</sub> storage projects and mandatory Measurements, Monitoring, and Verification (MMV) plans. Various geophysical methods can be used to estimate, from measured data, selected properties (e.g. velocity, density, and resistivity) of the subsurface. Accurate knowledge of those properties in turn makes it possible to quantify important reservoir parameters such as CO<sub>2</sub> saturation and pore pressure, giving the operator valuable information for predictable CO<sub>2</sub> injection and storage.</p><p>A combination of seismic and non-seismic technologies is usually part of the CO<sub>2</sub> monitoring plan throughout the project lifecycle (pre-injection, injection, and post-injection phases). The EM4CO2 project investigates whether marine Controlled Source Electro-Magnetics (CSEM) can be a cost-efficient complement to seismic in such monitoring plans. The main focus of the project is on demonstrating sufficient sensitivity of the technology and on further developing CSEM for time-lapse applications in areas with potentially interfering infrastructure. While improved data processing, imaging, and inversion techniques is often the subject of large research efforts, less attention is usually paid to developing better survey design strategies (rather relying on conventional methods). The work described here relates to the development and demonstration of new strategies for optimization of 4D survey design. Such optimization could decrease the large costs associated with acquisition of geophysical data (in this case CSEM), which could otherwise be a hurdle when proposing large-scale CO<sub>2</sub> storage as a means to mitigate climate change.</p><p>Conceptually, survey design aims at selecting the data acquisition that optimally resolves the subsurface model parameters of interest while maintaining the cost as low as possible. In other words, it consists of finding the best trade-off between data value and data collection cost. In this work, the CSEM survey design strategy is based on the analysis of the eigenvalue spectrum of the data misfit Hessian. A Python notebook was implemented for interactive prototyping and testing of various optimization strategies. A few examples of survey design are given for a model of the Sleipner storage site, showing how well a given regular survey can be decimated without significant loss of information. The main part of the work is, however, focused on survey optimization for potential CO<sub>2</sub> storage in the Smeaheia formation at about 1000 m depth below the sea surface, offshore Norway. This study shows how to determine the most valuable electric field components, most important frequencies, and source/receiver positions to use for reliable monitoring of a target region of choice. Initial results indicate that measuring the vertical component in addition to the horizontal electric field adds relevant information, and that lower frequencies (0.1-0.5 Hz) carry more information than higher (0.75-5 Hz) about the target depth. It is also clear that the method identifies sources and receivers distributed mainly above the target region as the most important.</p>

Author(s):  
Linan Xu ◽  
Edgar Manukyan ◽  
Hansruedi Maurer

Summary Seismic Full Waveform Inversion (FWI) has the potential to produce high-resolution subsurface images, but the computational resources required for realistically sized problems can be prohibitively large. In terms of computational costs, Gauss-Newton algorithms are more attractive than the commonly employed conjugate gradient methods, because the former have favorable convergence properties. However, efficient implementations of Gauss-Newton algorithms require an excessive amount of computer memory for larger problems. To address this issue, we introduce Compact Full Waveform Inversion (CFWI). Here, a suitable inverse model parameterization is sought that allows representing all subsurface features, potentially resolvable by a particular source-receiver deployment, but using only a minimum number of model parameters. In principle, an inverse model parameterization, based on the Eigenvalue decomposition, would be optimal, but this is computationally not feasible for realistic problems. Instead, we present two alternative parameter transformations, namely the Haar and the Hartley transformations, with which similarly good results can be obtained. By means of a suite of numerical experiments, we demonstrate that these transformations allow the number of model parameters to be reduced to only a few percent of the original parameterization without any significant loss of spatial resolution. This facilitates efficient solutions of large-scale FWI problems with explicit Gauss-Newton algorithms.


2013 ◽  
Vol 11 ◽  
pp. 23-29 ◽  
Author(s):  
T. Banova ◽  
W. Ackermann ◽  
T. Weiland

Abstract. In this paper we address a fast approach for an accurate eigenfrequency extraction, taken into consideration the evaluated electric field computations in time domain of a superconducting resonant structure. Upon excitation of the cavity, the electric field intensity is recorded at different detection probes inside the cavity. Thereafter, we perform Fourier analysis of the recorded signals and by means of fitting techniques with the theoretical cavity response model (in support of the applied excitation) we extract the requested eigenfrequencies by finding the optimal model parameters in least square sense. The major challenges posed by our work are: first, the ability of the approach to tackle the large scale eigenvalue problem and second, the capability to extract many, i.e. order of thousands, eigenfrequencies for the considered cavity. At this point, we demonstrate that the proposed approach is able to extract many eigenfrequencies of a closed resonator in a relatively short time. In addition to the need to ensure a high precision of the calculated eigenfrequencies, we compare them side by side with the reference data available from CEM3D eigenmode solver. Furthermore, the simulations have shown high accuracy of this technique and good agreement with the reference data. Finally, all of the results indicate that the suggested technique can be used for precise extraction of many eigenfrequencies based on time domain field computations.


Geophysics ◽  
2004 ◽  
Vol 69 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Andreas Hördt ◽  
Carsten Scholl

Based on the time‐domain integral equation, we derive expressions for the effect of an anomalous body close to the receiver or close to the transmitter on transient electromagnetic measurements. Similar to magnetotellurics, the distortion of electric fields at late times can be described by a constant distortion tensor relating the secondary electric field to the primary field components that would be obtained in the absence of the body. The distortion of a single electric field transient is a static shift only for particular configurations over a layered half‐space. In the general case, the perturbation is time dependent because the direction of the total electric field vector varies with time. The theory nicely explains spatial variations in electric field transients measured during a high‐redundancy long‐offset transient electromagnetics (LOTEM) survey over an underground gas storage site. An inversion example with synthetic data illustrates how distortion can be corrected. The elements of the distortion tensor are determined simultaneously with the model parameters. Ambiguity is reduced by a regularization of the distortion parameters. In the example, the background model is recovered well, even for the difficult case where only one transmitter is used. The distortion of the magnetic field time derivatives caused by bodies close to the receiver is proportional to the time derivative of the primary electric step response. The distortion is generally not limited to early times and cannot be neglected in general. Transmitter overprint effects resulting in static shifts of vertical magnetic field time derivatives may also be understood from the theory.


2018 ◽  
Vol 8 (12) ◽  
pp. 2642 ◽  
Author(s):  
Wei Xu ◽  
Cancan Zhang ◽  
Xinyuan Ji ◽  
Hongyan Xing

The measurement of the atmospheric electric field is of great significance for the study of thunderstorm cloud charge models. Traditional electric field meters can only measure the vertical component of the atmospheric electric field, and thus it is difficult to invert the structure of the thunderstorm cloud. A three-dimensional atmospheric electric field meter was developed to simultaneously measure the horizontal and vertical components of the atmospheric electric field in this paper. The effective measurement linearly relates the measured electric field to the induced voltage, and the nonlinear equations of the three-dimensional atmospheric electric field and the thunderstorm cloud-charging model parameters were derived. The particle swarm optimization algorithm (PSO) and the three-dimensional atmospheric electric field were used to invert the thunderstorm clouds. Experimental observations of the three-dimensional electric field in a cloud during a thunderstorm were analyzed. Combined with the typical charged structure model, parameters such as the charge and relative distance of the thunderstorm cloud were determined. The results showed that the value of the inversion fitness function reached 0.7288, and the charge structure was even. The measurement of the three-dimensional atmospheric electric field provides a new means of observation for the study of atmospheric electricity.


Author(s):  
Clemens M. Lechner ◽  
Nivedita Bhaktha ◽  
Katharina Groskurth ◽  
Matthias Bluemke

AbstractMeasures of cognitive or socio-emotional skills from large-scale assessments surveys (LSAS) are often based on advanced statistical models and scoring techniques unfamiliar to applied researchers. Consequently, applied researchers working with data from LSAS may be uncertain about the assumptions and computational details of these statistical models and scoring techniques and about how to best incorporate the resulting skill measures in secondary analyses. The present paper is intended as a primer for applied researchers. After a brief introduction to the key properties of skill assessments, we give an overview over the three principal methods with which secondary analysts can incorporate skill measures from LSAS in their analyses: (1) as test scores (i.e., point estimates of individual ability), (2) through structural equation modeling (SEM), and (3) in the form of plausible values (PVs). We discuss the advantages and disadvantages of each method based on three criteria: fallibility (i.e., control for measurement error and unbiasedness), usability (i.e., ease of use in secondary analyses), and immutability (i.e., consistency of test scores, PVs, or measurement model parameters across different analyses and analysts). We show that although none of the methods are optimal under all criteria, methods that result in a single point estimate of each respondent’s ability (i.e., all types of “test scores”) are rarely optimal for research purposes. Instead, approaches that avoid or correct for measurement error—especially PV methodology—stand out as the method of choice. We conclude with practical recommendations for secondary analysts and data-producing organizations.


2021 ◽  
Vol 7 (11) ◽  
pp. eabf1913
Author(s):  
Takuma Kitanishi ◽  
Ryoko Umaba ◽  
Kenji Mizuseki

The dorsal hippocampus conveys various information associated with spatial navigation; however, how the information is distributed to multiple downstream areas remains unknown. We investigated this by identifying axonal projections using optogenetics during large-scale recordings from the rat subiculum, the major hippocampal output structure. Subicular neurons demonstrated a noise-resistant representation of place, speed, and trajectory, which was as accurate as or even more accurate than that of hippocampal CA1 neurons. Speed- and trajectory-dependent firings were most prominent in neurons projecting to the retrosplenial cortex and nucleus accumbens, respectively. Place-related firing was uniformly observed in neurons targeting the retrosplenial cortex, nucleus accumbens, anteroventral thalamus, and medial mammillary body. Theta oscillations and sharp-wave/ripples tightly controlled the firing of projection neurons in a target region–specific manner. In conclusion, the dorsal subiculum robustly routes diverse navigation-associated information to downstream areas.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4638
Author(s):  
Simon Pratschner ◽  
Pavel Skopec ◽  
Jan Hrdlicka ◽  
Franz Winter

A revolution of the global energy industry is without an alternative to solving the climate crisis. However, renewable energy sources typically show significant seasonal and daily fluctuations. This paper provides a system concept model of a decentralized power-to-green methanol plant consisting of a biomass heating plant with a thermal input of 20 MWth. (oxyfuel or air mode), a CO2 processing unit (DeOxo reactor or MEA absorption), an alkaline electrolyzer, a methanol synthesis unit, an air separation unit and a wind park. Applying oxyfuel combustion has the potential to directly utilize O2 generated by the electrolyzer, which was analyzed by varying critical model parameters. A major objective was to determine whether applying oxyfuel combustion has a positive impact on the plant’s power-to-liquid (PtL) efficiency rate. For cases utilizing more than 70% of CO2 generated by the combustion, the oxyfuel’s O2 demand is fully covered by the electrolyzer, making oxyfuel a viable option for large scale applications. Conventional air combustion is recommended for small wind parks and scenarios using surplus electricity. Maximum PtL efficiencies of ηPtL,Oxy = 51.91% and ηPtL,Air = 54.21% can be realized. Additionally, a case study for one year of operation has been conducted yielding an annual output of about 17,000 t/a methanol and 100 GWhth./a thermal energy for an input of 50,500 t/a woodchips and a wind park size of 36 MWp.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1310
Author(s):  
Hajer Azaiez ◽  
Hakim Gabtni ◽  
Mourad Bédir

Electric resistivity sounding and tomography, as well as electromagnetic sounding, are the classical methods frequently used for hydrogeological studies. In this work, we propose the development and implementation of an original integrated approach using the unconventional hydro–geophysical methods of gravity and seismic reflection for the fast, large–scale characterization of hydrogeological potential using the Ain El Beidha plain (central Tunisia) as an analogue. Extending the values of vintage petroleum seismic reflection profiles and gravity data, in conjunction with available geological and hydrogeological information, we performed an advanced analysis to characterize the geometry of deep tertiary (Oligocene and Eocene) aquifers in this arid area. Residual and tilt angle gravity maps revealed that most gravity anomalies have a short wavelength. The study area was mainly composed of three major areas: the Oued Ben Zitoun and Ain El Beidha basins, which are both related to negative gravity trends corresponding to low–density subsiding depocenters. These basins are separated by an important NE–SW trend called “El Gonna–J. El Mguataa–Kroumet Zemla” gravity high. Evaluation of the superposition of detected lineaments and Euler deconvolution solutions’ maps showed several NE–SW and N–S relay system faults. The 3D density inversion model using a lateral and vertical cutting plane suggested the presence of two different tectonic styles (thin VS thick). Results from the gravity analysis were in concordance with the seismic analysis. The deep Oligocene and Eocene seismic horizons were calibrated to the hydraulic wells and surrounding outcrops. Oligocene and Eocene geological reservoirs appear very fractured and compartmented. The faulting network also plays an important role in enhancing groundwater recharge process of the Oligocene and Eocene aquifers. Finally, generated isochron maps provided an excellent opportunity to develop future comprehensive exploration surveys over smaller and more favorable areas’ sub–basins.


2013 ◽  
Vol 325-326 ◽  
pp. 476-479 ◽  
Author(s):  
Lin Suo Zeng ◽  
Zhe Wu

This article is based on finite element theory and use ANSYS simulation software to establish electric field calculation model of converter transformer for a ±800kV and make electric field calculation and analysis for valve winding. Converter transformer valve winding contour distribution of electric field have completed in the AC, DC and polarity reversal voltage.


2018 ◽  
Vol 12 (03) ◽  
pp. 1850007 ◽  
Author(s):  
J. P. Narayan ◽  
A. Kumar

The effects of ridge and valley on the characteristics of Rayleigh waves are presented in this paper. The research work carried out has been stimulated by the day by day increase of long-span structures in the hilly areas which are largely affected by the spatial variability in ground motion caused by the high-frequency Rayleigh waves. The Rayleigh wave responses of the considered triangular and elliptical ridge and valley models were computed using a fourth-order accurate staggered-grid viscoelastic P-SV wave finite-difference (FD) program. The simulated results revealed very large amplification of the horizontal component and de-amplification of the vertical component of Rayleigh wave at the top of a triangular ridge and de-amplification of both the components at the base of the triangular valley. The observed amplification of both the components of Rayleigh wave in front of elliptical valley was larger than triangular valley models. A splitting of the Rayleigh wave wavelet was inferred after interaction with ridge and valley. It is concluded that the large-scale topography acts as a natural insulator for the surface waves and the insulating capacity of the valley is more than that of a ridge. This insulation phenomenon is arising due to the reflection, diffraction and splitting of the surface wave while moving across the topography. It is concluded that insulating potential of the topography for the Rayleigh waves largely depends on their shape and shape-ratio.


Sign in / Sign up

Export Citation Format

Share Document