Understanding differences in land-atmosphere interactions between pan-European convection-permitting and parametrised climate models

Author(s):  
Kate Halladay ◽  
Segolene Berthou ◽  
Elizabeth Kendon

<p>Increasingly, we are using high-resolution convection-permitting models for climate projections but these models are less well understood in terms of the interaction between soil moisture, precipitation and evapotranspiration. The work was motivated by the discovery of warm, dry biases in summer in the 2.2 km convection-permitting model over France and eastern Europe compared to the 12 km convection-parametrised model that were associated with drier soils. We analyse several 12 km and 2.2 km versions of the Met Office Unified Model including sensitivity tests relating to soil hydraulics, land cover type and runoff model. We conduct similar tests using the land surface only to compare results between online and offline versions as the absence of some feedbacks can also produce differences.  </p>

2020 ◽  
Author(s):  
Jennifer Pirret ◽  
Fai Fung ◽  
John. F.B. Mitchell ◽  
Rachel McInnes

<p>Soil moisture is a key environmental factor for plant cultivation: too little and plant growth is restricted due to drought conditions; too much and soil becomes water-logged. It is important to understand how well climate models can represent current soil moisture processes as well as how soil moisture will respond to a changing climate, to inform adaptation of plant cultivation to future climate change. We explore current and future climate soil moisture conditions alongside water cycle processes such as evaporation and run-off in the latest UK Climate Projections (UKCP). Three model ensembles are available: UKCP Global, Regional and Local, with horizontal resolutions of 60km, 12km and 2.2km respectively. These each contain the Joint UK Land Environment Simulator (JULES) model as their land surface component. This suite of models offers the opportunity to understand the effects of parameter uncertainty and spatial resolution. Firstly, we assess the performance of the Global and Regional simulations by evaluating results from the baseline period (1981-2010) in terms of soil moisture (and the overall water balance) by comparing it to observations and to JULES driven by observations. Secondly, we assess how the water balance responds to a high future greenhouse gas concentration pathway. We find that soil moisture is likely to be lower in the summer and early autumn and spends a longer time below levels optimal for plant growth. The potential drivers of this change are explored, including future changes in precipitation and evaporation.</p>


2019 ◽  
Vol 58 (12) ◽  
pp. 2617-2632 ◽  
Author(s):  
Qifen Yuan ◽  
Thordis L. Thorarinsdottir ◽  
Stein Beldring ◽  
Wai Kwok Wong ◽  
Shaochun Huang ◽  
...  

AbstractIn applications of climate information, coarse-resolution climate projections commonly need to be downscaled to a finer grid. One challenge of this requirement is the modeling of subgrid variability and the spatial and temporal dependence at the finer scale. Here, a postprocessing procedure for temperature projections is proposed that addresses this challenge. The procedure employs statistical bias correction and stochastic downscaling in two steps. In the first step, errors that are related to spatial and temporal features of the first two moments of the temperature distribution at model scale are identified and corrected. Second, residual space–time dependence at the finer scale is analyzed using a statistical model, from which realizations are generated and then combined with an appropriate climate change signal to form the downscaled projection fields. Using a high-resolution observational gridded data product, the proposed approach is applied in a case study in which projections of two regional climate models from the Coordinated Downscaling Experiment–European Domain (EURO-CORDEX) ensemble are bias corrected and downscaled to a 1 km × 1 km grid in the Trøndelag area of Norway. A cross-validation study shows that the proposed procedure generates results that better reflect the marginal distributional properties of the data product and have better consistency in space and time when compared with empirical quantile mapping.


2017 ◽  
Vol 21 (4) ◽  
pp. 2187-2201 ◽  
Author(s):  
Pere Quintana-Seguí ◽  
Marco Turco ◽  
Sixto Herrera ◽  
Gonzalo Miguez-Macho

Abstract. Offline land surface model (LSM) simulations are useful for studying the continental hydrological cycle. Because of the nonlinearities in the models, the results are very sensitive to the quality of the meteorological forcing; thus, high-quality gridded datasets of screen-level meteorological variables are needed. Precipitation datasets are particularly difficult to produce due to the inherent spatial and temporal heterogeneity of that variable. They do, however, have a large impact on the simulations, and it is thus necessary to carefully evaluate their quality in great detail. This paper reports the quality of two high-resolution precipitation datasets for Spain at the daily time scale: the new SAFRAN-based dataset and Spain02. SAFRAN is a meteorological analysis system that was designed to force LSMs and has recently been extended to the entirety of Spain for a long period of time (1979/1980–2013/2014). Spain02 is a daily precipitation dataset for Spain and was created mainly to validate regional climate models. In addition, ERA-Interim is included in the comparison to show the differences between local high-resolution and global low-resolution products. The study compares the different precipitation analyses with rain gauge data and assesses their temporal and spatial similarities to the observations. The validation of SAFRAN with independent data shows that this is a robust product. SAFRAN and Spain02 have very similar scores, although the latter slightly surpasses the former. The scores are robust with altitude and throughout the year, save perhaps in summer when a diminished skill is observed. As expected, SAFRAN and Spain02 perform better than ERA-Interim, which has difficulty capturing the effects of the relief on precipitation due to its low resolution. However, ERA-Interim reproduces spells remarkably well in contrast to the low skill shown by the high-resolution products. The high-resolution gridded products overestimate the number of precipitation days, which is a problem that affects SAFRAN more than Spain02 and is likely caused by the interpolation method. Both SAFRAN and Spain02 underestimate high precipitation events, but SAFRAN does so more than Spain02. The overestimation of low precipitation events and the underestimation of intense episodes will probably have hydrological consequences once the data are used to force a land surface or hydrological model.


2011 ◽  
Vol 11 (12) ◽  
pp. 3135-3149 ◽  
Author(s):  
G. Panegrossi ◽  
R. Ferretti ◽  
L. Pulvirenti ◽  
N. Pierdicca

Abstract. The representation of land-atmosphere interactions in weather forecast models has a strong impact on the Planetary Boundary Layer (PBL) and, in turn, on the forecast. Soil moisture is one of the key variables in land surface modelling, and an inadequate initial soil moisture field can introduce major biases in the surface heat and moisture fluxes and have a long-lasting effect on the model behaviour. Detecting the variability of soil characteristics at small scales is particularly important in mesoscale models because of the continued increase of their spatial resolution. In this paper, the high resolution soil moisture field derived from ENVISAT/ASAR observations is used to derive the soil moisture initial condition for the MM5 simulation of the Tanaro flood event of April 2009. The ASAR-derived soil moisture field shows significantly drier conditions compared to the ECMWF analysis. The impact of soil moisture on the forecast has been evaluated in terms of predicted precipitation and rain gauge data available for this event have been used as ground truth. The use of the drier, highly resolved soil moisture content (SMC) shows a significant impact on the precipitation forecast, particularly evident during the early phase of the event. The timing of the onset of the precipitation, as well as the intensity of rainfall and the location of rain/no rain areas, are better predicted. The overall accuracy of the forecast using ASAR SMC data is significantly increased during the first 30 h of simulation. The impact of initial SMC on the precipitation has been related to the change in the water vapour field in the PBL prior to the onset of the precipitation, due to surface evaporation. This study represents a first attempt to establish whether high resolution SAR-based SMC data might be useful for operational use, in anticipation of the launch of the Sentinel-1 satellite.


2020 ◽  
Author(s):  
Elizabeth Cooper ◽  
Eleanor Blyth ◽  
Hollie Cooper ◽  
Rich Ellis ◽  
Ewan Pinnington ◽  
...  

Abstract. Soil moisture predictions from land surface models are important in hydrological, ecological and meteorological applications. In recent years the availability of wide-area soil-moisture measurements has increased, but few studies have combined model-based soil moisture predictions with in-situ observations beyond the point scale. Here we show that we can markedly improve soil moisture estimates from the JULES land surface model using field scale observations and data assimilation techniques. Rather than directly updating soil moisture estimates towards observed values, we optimize constants in the underlying pedotransfer functions, which relate soil texture to JULES soil physics parameters. In this way we generate a single set of newly calibrated pedotransfer functions based on observations from a number of UK sites with different soil textures. We demonstrate that calibrating a pedotransfer function in this way can improve the performance of land surface models, leading to the potential for better flood, drought and climate projections.


2021 ◽  
Author(s):  
Thomas Noël ◽  
Harilaos Loukos ◽  
Dimitri Defrance

A high-resolution climate projections dataset is obtained by statistically downscaling climate projections from the CMIP6 experiment using the ERA5-Land reanalysis from the Copernicus Climate Change Service. This global dataset has a spatial resolution of 0.1°x 0.1°, comprises 5 climate models and includes two surface daily variables at monthly resolution: air temperature and precipitation. Two greenhouse gas emissions scenarios are available: one with mitigation policy (SSP126) and one without mitigation (SSP585). The downscaling method is a Quantile Mapping method (QM) called the Cumulative Distribution Function transform (CDF-t) method that was first used for wind values and is now referenced in dozens of peer-reviewed publications. The data processing includes quality control of metadata according to the climate modelling community standards and value checking for outlier detection.


2011 ◽  
Vol 26 (6) ◽  
pp. 785-807 ◽  
Author(s):  
Jonathan L. Case ◽  
Sujay V. Kumar ◽  
Jayanthi Srikishen ◽  
Gary J. Jedlovec

Abstract It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high-resolution models. This paper presents model verification results of a case study period from June to August 2008 over the southeastern United States using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the National Aeronautics and Space Administration’s (NASA) Land Information System (LIS) and sea surface temperatures (SSTs) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction’s (NCEP) 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spinup run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS–MODIS data substantially impact surface and boundary layer properties. The Developmental Testbed Center’s Meteorological Evaluation Tools package is employed to produce verification statistics, including traditional gridded precipitation verification and output statistics from the Method for Object-Based Diagnostic Evaluation (MODE) tool. The LIS–MODIS initialization is found to produce small improvements in the skill scores of 1-h accumulated precipitation during the forecast hours of the peak diurnal convective cycle. Because there is very little union in time and space between the forecast and observed precipitation systems, results from the MODE object verification are examined to relax the stringency of traditional gridpoint precipitation verification. The MODE results indicate that the LIS–MODIS-initialized model runs increase the 10 mm h−1 matched object areas (“hits”) while simultaneously decreasing the unmatched object areas (“misses” plus “false alarms”) during most of the peak convective forecast hours, with statistically significant improvements of up to 5%. Simulated 1-h precipitation objects in the LIS–MODIS runs more closely resemble the observed objects, particularly at higher accumulation thresholds. Despite the small improvements, however, the overall low verification scores indicate that much uncertainty still exists in simulating the processes responsible for airmass-type convective precipitation systems in convection-allowing models.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 542 ◽  
Author(s):  
Mohammed Dabboor ◽  
Leqiang Sun ◽  
Marco Carrera ◽  
Matthew Friesen ◽  
Amine Merzouki ◽  
...  

Soil moisture is a key variable in Earth systems, controlling the exchange of water andenergy between land and atmosphere. Thus, understanding its spatiotemporal distribution andvariability is important. Environment and Climate Change Canada (ECCC) has developed a newland surface parameterization, named the Soil, Vegetation, and Snow (SVS) scheme. The SVS landsurface scheme features sophisticated parameterizations of hydrological processes, including watertransport through the soil. It has been shown to provide more accurate simulations of the temporaland spatial distribution of soil moisture compared to the current operational land surface scheme.Simulation of high resolution soil moisture at the field scale remains a challenge. In this study, wesimulate soil moisture maps at a spatial resolution of 100 m using the SVS land surface scheme overan experimental site located in Manitoba, Canada. Hourly high resolution soil moisture maps wereproduced between May and November 2015. Simulated soil moisture values were compared withestimated soil moisture values using a hybrid retrieval algorithm developed at Agriculture andAgri-Food Canada (AAFC) for soil moisture estimation using RADARSAT-2 Synthetic ApertureRadar (SAR) imagery. Statistical analysis of the results showed an overall promising performanceof the SVS land surface scheme in simulating soil moisture values at high resolution scale.Investigation of the SVS output was conducted both independently of the soil texture, and as afunction of the soil texture. The SVS model tends to perform slightly better over coarser texturedsoils (sandy loam, fine sand) than finer textured soils (clays). Correlation values of the simulatedSVS soil moisture and the retrieved SAR soil moisture lie between 0.753–0.860 over sand and 0.676-0.865 over clay, with goodness of fit values between 0.567–0.739 and 0.457–0.748, respectively. TheRoot Mean Square Difference (RMSD) values range between 0.058–0.062 over sand and 0.055–0.113over clay, with a maximum absolute bias of 0.049 and 0.094 over sand and clay, respectively. Theunbiased RMSD values lie between 0.038–0.057 over sand and 0.039–0.064 over clay. Furthermore,results show an Index of Agreement (IA) between the simulated and the derived soil moisturealways higher than 0.90.


Sign in / Sign up

Export Citation Format

Share Document