Indian Monsoon Precipitation over Orography: Verification and Enhancement of understanding – Outcomes of the IMPROVE project

Author(s):  
Andrew Turner ◽  
Jennifer Fletcher ◽  
Kieran Hunt ◽  
Jayesh Phadtare ◽  
Stephen Griffiths ◽  
...  

<p>IMPROVE is motivated by the effects of orography on Indian precipitation as part of the diurnal cycle of convection, contributing to water supply, as well as its role in extreme events.  IMPROVE considers two focal regions.  The Western Ghats, which intercept the monsoon flow across the Arabian Sea, receive some of the most frequent and heaviest rainfall during summer as well as being subject to extremes such as the 2018 Kerala floods.  Meanwhile, the Himalayas play a vital role in separating dry midlatitude flows from tropical airmasses and are subject to extremes during the summer monsoon, as well as in winter due to the passage of western disturbances.  This presentation summarizes the key results of IMPROVE.  Firstly, we examine the impact of orography on the observed convective diurnal cycle and assess its simulation in models at a range of resolutions including convection-permitting scales.  MetUM and WRF model experiments are used to identify key mechanisms and test their capability at simulating scale interactions between forcing at the large scale from the BSISO and newly identified regimes of on- and offshore convection near the Western Ghats.  An additional aspect to this work is the construction of a two-layer analytical model to test the behaviour of sheared flow perpendicular to a ridge analogous to the Western Ghats.  Secondly, the role of orography in extreme events is considered.  For the Western Ghats, this focuses on the interaction between monsoon low-pressure systems and the southwesterly flow in enhancing local rainfall.  For the Himalayas, we focus on characterising interactions between tropical lows and western disturbances in enhancing the orographic precipitation.  The work in IMPROVE works towards a deeper understanding of orographic rainfall and its extremes over India and uncovering why such mechanisms may be poorly represented in models.</p>

2021 ◽  
Author(s):  
Asokan Laila Achu ◽  
Girish Gopinath

<p>The Western Ghats (WG), an elevated passive continental margin along the southwestern coast of India, is the most widely populated biodiversity hot spot in the world. Monsoon climate is prevalent throughout the length of the Western Ghats. The WG region is prone to the occurrence of various hydro-climatic disasters such as extreme rainfall-driven floods and landslides. During the past 100 years, landslides and floods caused by extreme rainfall events in the WG have occurred in 1924 and 1979; but the most disastrous event, in terms of area of impact, loss of life and economic impact, occurred in August 2018. Generally, the south-west monsoon (Indian summer monsoon) occurs in the first week of June and extends up to September and the Indian Meteorological Department (IMD) predicted above-normal rainfall of 13% during the month of August 2018. But the State received an excess of 96% during the period from 1st to 30th August 2018, and 33% during the entire monsoon period till the end of August. The unprecedented heavy rains, storms, floods and associated thousands of landslides have caused exorbitant losses including 400 life losses, over 2.20 lakh people were displaced, and 20000 homes and 80 dams were damaged or destructed. This study aimed to elucidate the reasons behind the thousands of landslides caused in WG using observed and field evidences. Changes in south-west monsoon pattern and rainfall intensity played a vital role in the occurrence of landslides in WG. Further, the extensive causalities are the result of anthropogenic disturbances including landscape alterations and improper landuse practices in the hilly tracks of WG. The major causative factors for series of landslides in various segments of WG is due to hindrance of lower order streams/springs, vertical cutting, intensive quarrying, unscientific rain pits & man-made structures together with erratic rainfall triggered major and minor landslides in various segments of WG. The present investigation concludes that a scientific landuse policy and geoscientific awareness is essential to mitigate the environment.</p>


2018 ◽  
Vol 17 (1) ◽  
pp. 21
Author(s):  
Arun Kanagavel ◽  
Sethu Parvathy ◽  
Abhiijth P. Chundakatil ◽  
Neelesh Dahanukar ◽  
Benjamin Tapley

Distribution and habitat associations of the Critically Endangered frog Walkerana phrynoderma (Anura: Ranixalidae), with an assessment of potential threats, abundance, and morphology. Little is known about Walkerana phrynoderma, a frog endemic to the Anamalai Hills of the Western Ghats of India. Baseline information (i.e., distribution, threats, habitat characteristics, activity patterns, and relative abundance) is provided for this species, with the aim of improving our understanding of the status of the species in the wild. Visual-encounter, transect, and time-activity budget surveys were conducted in and around the Anamalai Hills of the Western Ghats. The frog skin was swabbed to determine the presence/absence of Batrachochytrium dendrobatidis, and habitat and environmental characteristics were recorded at sites where W. phrynoderma was found. These data were compared with those of sites apparently lacking this species that had suitable habitat. Walkerana phrynoderma is restricted to evergreen forests between 1300 and 1700 m a.s.l. in the Anamalai Tiger Reserve and at Munnar; thus, its range was extended from the state of Tamil Nadu to the adjoining state of Kerala. Pesticide runoff and human disturbance are the most severe threats to the species; B. dendrobatidis was not detected. This nocturnal anuran prefers forest edges and is associated with well-shaded forest foors in cool areas near freshwater streams. Walkerana phrynoderma is rarely encountered whereas its congener, W. leptodactyla, is more common. The impact of anthropogenic disturbances, especially waste disposal and development of tourism infrastructure, should be evaluated. The land that is owned by the Forest Department peripheral to the protected areas could be designated as eco-sensitive sites to prevent changes in land use that could have an adverse effect on W. phrynoderma.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 959
Author(s):  
Ana María Durán-Quesada ◽  
Rogert Sorí ◽  
Paulina Ordoñez ◽  
Luis Gimeno

The Intra–Americas Seas region is known for its relevance to air–sea interaction processes, the contrast between large water masses and a relatively small continental area, and the occurrence of extreme events. The differing weather systems and the influence of variability at different spatio–temporal scales is a characteristic feature of the region. The impact of hydro–meteorological extreme events has played a huge importance for regional livelihood, having a mostly negative impact on socioeconomics. The frequency and intensity of heavy rainfall events and droughts are often discussed in terms of their impact on economic activities and access to water. Furthermore, future climate projections suggest that warming scenarios are likely to increase the frequency and intensity of extreme events, which poses a major threat to vulnerable communities. In a region where the economy is largely dependent on agriculture and the population is exposed to the impact of extremes, understanding the climate system is key to informed policymaking and management plans. A wealth of knowledge has been published on regional weather and climate, with a majority of studies focusing on specific components of the system. This study aims to provide an integral overview of regional weather and climate suitable for a wider community. Following the presentation of the general features of the region, a large scale is introduced outlining the main structures that affect regional climate. The most relevant climate features are briefly described, focusing on sea surface temperature, low–level circulation, and rainfall patterns. The impact of climate variability at the intra–seasonal, inter–annual, decadal, and multi–decadal scales is discussed. Climate change is considered in the regional context, based on current knowledge for natural and anthropogenic climate change. The present challenges in regional weather and climate studies have also been included in the concluding sections of this review. The overarching aim of this work is to leverage information that may be transferred efficiently to support decision–making processes and provide a solid foundation on regional weather and climate for professionals from different backgrounds.


2019 ◽  
Vol 76 (11) ◽  
pp. 3529-3552
Author(s):  
Giuseppe Torri ◽  
David K. Adams ◽  
Huiqun Wang ◽  
Zhiming Kuang

Abstract Convective processes in the atmosphere over the Maritime Continent and their diurnal cycles have important repercussions for the circulations in the tropics and beyond. In this work, we present a new dataset of precipitable water vapor (PWV) obtained from the Sumatran GPS Array (SuGAr), a dense network of GPS stations principally for examining seismic and tectonic activity along the western coast of Sumatra and several offshore islands. The data provide an opportunity to examine the characteristics of convection over the area in greater detail than before. In particular, our results show that the diurnal cycle of PWV on Sumatra has a single late afternoon peak, while that offshore has both a midday and a nocturnal peak. The SuGAr data are in good agreement with GPS radio occultation data from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission, as well as with imaging spectrometer data from the Ozone Measuring Instrument (OMI). A comparison between SuGAr and the NASA Water Vapor Project (NVAP), however, shows significant differences, most likely due to discrepancies in the temporal and spatial resolutions. To further understand the diurnal cycle contained in the SuGAr data, we explore the impact of the Madden–Julian oscillation (MJO) on the diurnal cycle with the aid of the Weather Research and Forecasting (WRF) Model. Results show that the daily mean and the amplitude of the diurnal cycle appear smaller during the suppressed phase relative to the developing/active MJO phase. Furthermore, the evening/nighttime peaks of PWV offshore appear later during the suppressed phase of the MJO compared to the active phase.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Longjie Li ◽  
Min Ma ◽  
Peng Lei ◽  
Xiaoping Wang ◽  
Xiaoyun Chen

Effective and efficient image comparison plays a vital role in content-based image retrieval (CBIR). The earth mover’s distance (EMD) is an enticing measure for image comparison, offering intuitive geometric interpretation and modelling the human perceptions of similarity. Unfortunately, computing EMD, using the simplex method, has cubic complexity. FastEMD, based on min-cost flow, reduces the complexity to (O(N2log⁡N)). Although both methods can obtain the optimal result, the high complexity prevents the application of EMD on large-scale image datasets. Thresholding the ground distance can make EMD faster and more robust, since it can decrease the impact of noise and reduce the range of transportation. In this paper, we present a new image distance metric,EMD+, which applies a threshold to the ground distance. To computeEMD+, the FastEMD approach can be employed. We also propose a novel linear approximation algorithm. Our algorithm achievesONcomplexity with the benefit of qualified bins. Experimental results show that (1) our method is 2 to 3 orders of magnitude faster than EMD (computed by FastEMD) and 2 orders of magnitude faster than FastEMD and (2) the precision of our approximation algorithm is no less than the precision of FastEMD.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Dibas Shrestha ◽  
Rashila Deshar ◽  
Kenji Nakamura

Characteristics of summer (June–August) precipitation over two coastal mountain regions in South Asia (Western Ghats: WG and Myanmar West Coast: MWC) with a focus on topographic impact are analyzed using the 13-year (1998–2010) high spatial resolution (0.05° × 0.05°) version 6 data obtained from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). A relationship between precipitation patterns and topography was observed in the coastal mountains. In both the WG and MWC, maximum rainfall along a tight line on the upwind side of the coastal mountains is primarily attributed to rain frequency. However, intense precipitation was observed over the offshore regions. Compared with the WG, deeper and large-scale precipitation systems develop over the MWC, producing more intense rainfall. It is suggested that insufficient humidity deters large-scale convection over the WG, and the atmosphere is sufficiently moist over the MWC.


2014 ◽  
Vol 142 (11) ◽  
pp. 4187-4206 ◽  
Author(s):  
Shu-Ya Chen ◽  
Tae-Kwon Wee ◽  
Ying-Hwa Kuo ◽  
David H. Bromwich

Abstract The impact of global positioning system (GPS) radio occultation (RO) data on an intense synoptic-scale storm that occurred over the Southern Ocean in December 2007 is evaluated, and a synoptic explanation of the assessed impact is offered. The impact is assessed by using the three-dimensional variational data assimilation scheme (3DVAR) of the Weather Research and Forecasting (WRF) Model Data Assimilation system (WRFDA), and by comparing two experiments: one with and the other without assimilating the refractivity data from four different RO missions. Verifications indicate significant positive impacts of the RO data in various measures and parameters as well as in the track and intensity of the Antarctic cyclone. The analysis of the atmospheric processes underlying the impact shows that the assimilation of the RO data yields substantial improvements in the large-scale circulations that in turn control the development of the Antarctic storm. For instance, the RO data enhanced the strength of a 500-hPa trough over the Southern Ocean and prevented the katabatic flow near the coast of East Antarctica from an overintensification. This greatly influenced two low pressure systems of a comparable intensity, which later merged together and evolved into the major storm. The dominance of one low over the other in the merger dramatically changed the track, intensity, and structure of the merged storm. The assimilation of GPS RO data swapped the dominant low, leading to a remarkable improvement in the subsequent storm’s prediction.


Author(s):  
Michael B. Natoli ◽  
Eric D. Maloney

AbstractThe impact of quasi-biweekly variability in the monsoon southwesterly winds on the precipitation diurnal cycle in the Philippines is examined using CMORPH precipitation, ERA5 reanalysis, and outgoing longwave radiation (OLR) fields. Both a case study during the 2018 Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign and a 23-year composite analysis are used to understand the effect of the QBWO on the diurnal cycle. QBWO events in the west Pacific, identified with an extended EOF index, bring increases in moisture, cloudiness, and westerly winds to the Philippines. Such events are associated with significant variability in daily mean precipitation and the diurnal cycle. It is shown that the modulation of the diurnal cycle by the QBWO is remarkably similar to that by the boreal summer intraseasonal oscillation (BSISO). The diurnal cycle reaches a maximum amplitude on the western side of the Philippines on days with average to above average moisture, sufficient insolation, and weakly offshore prevailing wind. This occurs during the transition period from suppressed to active large-scale convection for both the QBWO and BSISO.Westerly monsoon surges associated with QBWO variability generally exhibit active precipitation over the South China Sea (SCS), but a depressed diurnal cycle. These results highlight that modes of large-scale convective variability in the tropics can have a similar impact on the diurnal cycle if they influence the local scale environmental background state similarly.


2020 ◽  
Author(s):  
Georgia Sotiropoulou ◽  
Etienne Vignon ◽  
Gillian Young ◽  
Thomas Lachlan-Cope ◽  
Alexis Berne ◽  
...  

<p>In-situ measurements of Antarctic clouds frequently show that ice crystal number concentrations  are much higher than the available ice-nucleating particles, suggesting that Secondary Ice Production (SIP) may be active. Here we investigate the impact of two SIP mechanisms, Hallett-Mossop (H-M)and collisional break-up (BR), on a case from the Microphysics of Antarctic Clouds (MAC) campaign in Weddell Sea using the Weather and Research Forecasting (WRF) model. H-M is already included in the default version of the Morrison microphysics scheme in WRF; for BR we implement different parameterizations and compare their performance. H-M alone is not effective enough to reproduce the observed concentrations. In contrast, BR can result in realistic ice multiplication, independently of whether H-M is active or not. In particular, the Phillips parameterization results in very good agreement with observations, but its performance depends on the prescribed rimed fraction of the colliding ice particles. Finally, our results show low sensitivity to primary ice nucleation, as long as there are enough primary ice crystals to initiate ice-ice collisions. Our findings suggest that BR is a potentially important SIP mechanism in the pristine Antarctic atmosphere that is currently not represented in weather-prediction and climate models.</p>


2008 ◽  
Vol 65 (8) ◽  
pp. 2705-2718 ◽  
Author(s):  
Irina Sandu ◽  
Jean-Louis Brenguier ◽  
Olivier Geoffroy ◽  
Odile Thouron ◽  
Valery Masson

Abstract Recent large-eddy simulation (LES) studies of the impact of aerosol on the dynamics of nocturnal marine stratocumulus revealed that, depending on the large-scale forcings, an aerosol-induced increase of the droplet concentration can lead to either an increase or a decrease of the liquid water path, hence contrasting with the cloud thickening that is expected from a reduction of the precipitation efficiency. In this study, the aerosol impacts on cloud microphysics are examined in the context of the boundary-layer diurnal cycle using 36-h LES simulations of pristine and polluted clouds. These simulations corroborate previous findings that during nighttime aerosol-induced liquid water path changes are sensitive to the large-scale forcings via enhancement of cloud-top entrainment such that, ultimately, the liquid water path may be reduced when the free-tropospheric-entrained air is drier. During the day, however, enhanced entrainment, inhibition of drizzle evaporation below cloud base, and reduced sensible heat flux from the surface lead to a more pronounced decoupling of the boundary layer, which significantly amplifies the liquid water path reduction of the polluted clouds. At night the sign of the liquid water path difference between pristine and polluted clouds depends upon large-scale forcings, while during the day the liquid water path of polluted clouds is always smaller than the one of the pristine clouds. Suggestions are made on how observational studies could be designed for validation of these simulations.


Sign in / Sign up

Export Citation Format

Share Document