Mapping shallow water bubbling reefs – a method comparison between topobathymetric lidar and multibeam echosounder

Author(s):  
Mikkel Skovgaard Andersen ◽  
Lars Øbro Hansen ◽  
Zyad Al-Hamdani ◽  
Signe Schilling Hansen ◽  
Manfred Niederwieser ◽  
...  

<p>Bubbling reefs are submarine structures formed by aggregating carbonate resulting from leaking gases. The reef formations can form pillars rising several meters above the sea floor. They support a high diversity of benthic communities, and in the EU Habitat Directive they are specifically mentioned as a natural habitat type that require conservation.</p><p>Knowledge about the presence, locations and shape of bubbling reefs are usually obtained by geophysical surveying using multibeam echosounder (MBES), sidescan sonar and/or seismic acquisition systems, combined with ground truth verification. However, this traditional survey method is time consuming, especially for full coverage surveys in shallow water. Full coverage surveys are a requirement to capture the bubbling reefs due to their relatively small spatial extent. Besides, traditional geophysical vessel borne surveys have their limitations in shallow water due to low spatial coverage and vessel draft.</p><p>In recent years, airborne topobathymetric (green wavelength) lidar has emerged as a new possible surveying method in shallow water (e.g. Andersen et al., 2017). Compared to vessel borne MBES, full coverage lidar surveys can be conducted within hours instead of days/weeks, while also including full coverage in the shallow water and a seamless transition between land and water. Thus, topobathymetric lidar may be a good choice for carrying out full coverage surveys in large shallow water areas. However, the accuracy and the resolution of the collected dataset are important in these surveys, not least when mapping small scale features such as bubbling reefs.</p><p>In this study, we investigated the potential of mapping bubbling reefs in shallow water (<10 m) using topobathymetric lidar. The main objective was to assess the performance of airborne topobathymetric lidar to detect and resolve small scale objects, i.e. bubbling reefs, by comparison to MBES data. Both MBES and lidar data were acquired in spring 2019 in a designated Natura 2000 area close to Hirsholmene in the northern Kattegat region in Denmark. The comparison of the two datasets included a quantification of the accuracy, and an assessment of the performance for mapping bubbling reefs.</p><p> </p><p>Reference:</p><p>Andersen M.S., Gergely A., Al-Hamdani Z., Steinbacher F., Larsen L.R., Ernstsen V.B. (2017). Processing and performance of topobathymetric lidar data for geomorphometric and morphological classification in a high-energy tidal environment. Hydrology and Earth System Sciences, 21: 43-63, DOI: 10.5194/hess-21-43-2017.</p>

2015 ◽  
Vol 65 (3) ◽  
pp. 297-318
Author(s):  
Piotr Łuczyński ◽  
Wojciech Kozłowski ◽  
Stanisław Skompski

AbstractThe term “re-flooding window” was recently proposed as a time-interval connected with the transgressive stage of present day peri-reefal development. In the analysis presented here, a fossil record of a re-flooding window has been recognized. Nine Late Silurian carbonate sections exposed on the banks of the Dnister River in Podolia (Ukraine) have been correlated base on bed-by-bed microfacies analysis and spectral gamma ray (SGR) measurements. Correlated were sections representing settings ranging from the inner part of a shallow-water carbonate platform to its slope, through an organic buildup. The reconstructed depositional scenario has been divided into six development stages, with the first three representing a regressive interval and the latter three a transgressive interval of the basin’s history. The re-flooding window has been identified at the beginning of a transgressive part of the succession. Surprisingly, it is characterized by an extremely fast growth of a shallow, tide-dominated platform and by deposition of calciturbiditic layers in a more basinal area. The interpreted succession is a small-scale model illustrating the reaction of carbonate depositional sub-environments to sea level changes and determining the facies position of the stromatoporoid buildups within the facies pattern on a Silurian shelf. The use of SGR analyses in shallow water, partly high-energy, carbonate facies, both for correlation purposes and for identifying depositional systems, is a relatively new method, and thus can serve as a reference for other studies of similar facies assortment.


2021 ◽  
Vol 10 (6) ◽  
pp. 233
Author(s):  
Rasmus Karlsson

While the precautionary principle may have offered a sound basis for managing environmental risk in the Holocene, the depth and width of the Anthropocene have made precaution increasingly untenable. Not only have many ecosystems already been damaged beyond natural recovery, achieving a sustainable long-term global trajectory now seem to require ever greater measures of proactionary risk-taking, in particular in relation to the growing need for climate engineering. At the same time, different optical illusions, arising from temporary emissions reductions due to the COVID-19 epidemic and the local deployment of seemingly “green” small-scale renewable energy sources, tend to obscure worsening global trends and reinforce political disinterest in developing high-energy technologies that would be more compatible with universal human development and worldwide ecological restoration. Yet, given the lack of feedback between the global and the local level, not to mention the role of culture and values in shaping perceptions of “sustainability”, the necessary learning may end up being both epistemologically and politically difficult. This paper explores the problem of finding indicators suitable for measuring progress towards meaningful climate action and the restoration of an ecologically vibrant planet. It is suggested that such indicators are essentially political as they reflect, not only different assessments of technological feasibility, but orientations towards the Enlightenment project.


2019 ◽  
Vol 19 (10) ◽  
pp. 2183-2205 ◽  
Author(s):  
Bruno Castelle ◽  
Tim Scott ◽  
Rob Brander ◽  
Jak McCarroll ◽  
Arthur Robinet ◽  
...  

Abstract. The two primary causes of surf zone injuries (SZIs) worldwide, including fatal drowning and severe spinal injuries, are rip currents (rips) and shore-break waves. SZIs also result from surfing and bodyboarding activity. In this paper we address the primary environmental controls on SZIs along the high-energy meso–macro-tidal surf beach coast of southwestern France. A total of 2523 SZIs recorded by lifeguards over 186 sample days during the summers of 2007, 2009 and 2015 were combined with measured and/or hindcast weather, wave, tide, and beach morphology data. All SZIs occurred disproportionately on warm sunny days with low wind, likely because of increased beachgoer numbers and hazard exposure. Relationships were strongest for shore-break- and rip-related SZIs and weakest for surfing-related SZIs, the latter being also unaffected by tidal stage or range. Therefore, the analysis focused on bathers. More shore-break-related SZIs occur during shore-normal incident waves with average to below-average wave height (significant wave height, Hs = 0.75–1.5 m) and around higher water levels and large tide ranges when waves break on the steepest section of the beach. In contrast, more rip-related drownings occur near neap low tide, coinciding with maximised channel rip flow activity, under shore-normal incident waves with Hs >1.25 m and mean wave periods longer than 5 s. Additional drowning incidents occurred at spring high tide, presumably due to small-scale swash rips. The composite wave and tide parameters proposed by Scott et al. (2014) are key controlling factors determining SZI occurrence, although the risk ranges are not necessarily transferable to all sites. Summer beach and surf zone morphology is interannually highly variable, which is critical to SZI patterns. The upper beach slope can vary from 0.06 to 0.18 between summers, resulting in low and high shore-break-related SZIs, respectively. Summers with coast-wide highly (weakly) developed rip channels also result in widespread (scarce) rip-related drowning incidents. With life risk defined in terms of the number of people exposed to life threatening hazards at a beach, the ability of morphodynamic models to simulate primary beach morphology characteristics a few weeks or months in advance is therefore of paramount importance for predicting the primary surf zone life risks along this coast.


2009 ◽  
Vol 137 (10) ◽  
pp. 3339-3350 ◽  
Author(s):  
Ramachandran D. Nair

Abstract A second-order diffusion scheme is developed for the discontinuous Galerkin (DG) global shallow-water model. The shallow-water equations are discretized on the cubed sphere tiled with quadrilateral elements relying on a nonorthogonal curvilinear coordinate system. In the viscous shallow-water model the diffusion terms (viscous fluxes) are approximated with two different approaches: 1) the element-wise localized discretization without considering the interelement contributions and 2) the discretization based on the local discontinuous Galerkin (LDG) method. In the LDG formulation the advection–diffusion equation is solved as a first-order system. All of the curvature terms resulting from the cubed-sphere geometry are incorporated into the first-order system. The effectiveness of each diffusion scheme is studied using the standard shallow-water test cases. The approach of element-wise localized discretization of the diffusion term is easy to implement but found to be less effective, and with relatively high diffusion coefficients, it can adversely affect the solution. The shallow-water tests show that the LDG scheme converges monotonically and that the rate of convergence is dependent on the coefficient of diffusion. Also the LDG scheme successfully eliminates small-scale noise, and the simulated results are smooth and comparable to the reference solution.


Author(s):  
Maria Mesimeri ◽  
Kristine L. Pankow ◽  
James Rutledge

ABSTRACT We propose a new frequency-domain-based algorithm for detecting small-magnitude seismic events using dense surface seismic arrays. Our proposed method takes advantage of the high energy carried by S waves, and approximate known source locations, which are used to rotate the horizontal components to obtain the maximum amplitude. By surrounding the known source area with surface geophones, we achieve a favorable geometry for locating the detected seismic events with the backprojection method. To test our new detection method, we used a dense circular array, consisting of 151 5 Hz three-component geophones, over a 5 km aperture that was in operation at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) in southcentral Utah. We apply the new detection method during a small-scale test injection phase at FORGE, and during an aftershock sequence of an Mw 4.1 earthquake located ∼30  km north of the geophone array, within the Black Rock volcanic field. We are able to detect and locate microseismic events (Mw<0) during injections, despite the high level of anthropogenic activity, and several aftershocks that are missing from the regional catalog. By comparing our method with known algorithms that operate both in the time and frequency domain, we show that our proposed method performs better in the case of the FORGE injection monitoring, and equally well for the off-array aftershock sequence. Our new method has the potential to improve microseismic event detections even in extremely noisy environments, and the proposed location scheme serves as a direct discriminant between true and false detections.


Author(s):  
Lya Aklimawati ◽  
Djoko Soemarno ◽  
Surip Mawardi

Development the competitive industries primarily small firms ought to be realized for improving economic growth of a community. Small industries have an important role especially on income equity improvement in rural areas. The objective of this study was to assess industry players motivation for developing their business in coffee processing and also to analyze factors which influence business income focused on micro and small-scale coffee industries in Bondowoso District. Survey method was used in this study for collecting primary and secondary data. A number of respondents were 25 coffee industry players who be determined by judgement sampling method. Data were analyzed by descriptive and statistic method. Multiple linear regression was used in the suspected factors that affect small industries income. The results indicated that the main motivation of industry players in initiating and developing coffee business was financial incentive. Consecutively, indicators that may explain industry player’s motivation were expectation, motive and incentive. Micro and small-scale industries income was affected by raw material, marketing reach, technology and business experience. Meanwhile, micro and small-scale industries income was not affected by labor cost and source of capital.


GeoArabia ◽  
2003 ◽  
Vol 8 (1) ◽  
pp. 47-86 ◽  
Author(s):  
Jürgen Grötsch ◽  
Omar Suwaina ◽  
Ghiath Ajlani ◽  
Ahmed Taher ◽  
Reyad El-Khassawneh ◽  
...  

ABSTRACT A 3-D geological model of the Kimmeridgian-Tithonian Manifa, Hith, Arab, and Upper Diyab formations in the area of the onshore Central Abu Dhabi Ridge was based on a newly established sequence stratigraphic, sedimentologic, and diagenetic model. It was part of an inter-disciplinary study of the large sour-gas reserves in Abu Dhabi that are mainly hosted by the Arab Formation. The model was used for dynamic evaluations and recommendations for further appraisal and development planning in the studied field. Fourth-order aggradational and progradational cycles are composed of small-scale fifth-order shallowing-upward cycles, mostly capped by anhydrite within the Arab-ABC. The study area is characterized by a shoreline progradation of the Arab Formation toward the east-northeast marked by high-energy oolitic/bioclastic grainstones of the Upper Arab-D and the Asab Oolite. The Arab-ABC, Hith, and Manifa pinch out toward the northeast. The strongly bioturbated Lower Arab-D is an intrashelf basinal carbonate ramp deposit, largely time-equivalent to the Arab-ABC. The deposition of the Manifa Formation over the Arab Formation was a major back-stepping event of the shallow-water platform before the onset of renewed progradation in the Early Cretaceous. Well productivity in the Arab-ABC is controlled mainly by thin, permeable dolomitic streaks in the fifth-order cycles at the base of the fourth-order cycles. This has major implications for reservoir management, well completion and stimulation, and development planning. Good reservoir properties have been preserved in the early diagenetic dolomitic streaks. In contrast, the reservoir properties of the Upper Arab-D oolitic/bioclastic grainstones deteriorate with depth due to burial diagenesis. A rock-type scheme was established because complex diagenetic overprinting prevented the depositional facies from being directly related to petrophysical properties. Special core analysis and the attribution of saturation functions to static and dynamic models were made on a cell-by-cell basis using the scheme and honoring the 3-D depositional facies and property model. The results demonstrated the importance of integrating sedimentological analysis and diagenesis with rock typing and static and dynamic modeling so as to enhance the predictive capabilities of subsurface models.


2020 ◽  
Vol 245 ◽  
pp. 07036
Author(s):  
Christoph Beyer ◽  
Stefan Bujack ◽  
Stefan Dietrich ◽  
Thomas Finnern ◽  
Martin Flemming ◽  
...  

DESY is one of the largest accelerator laboratories in Europe. It develops and operates state of the art accelerators for fundamental science in the areas of high energy physics, photon science and accelerator development. While for decades high energy physics (HEP) has been the most prominent user of the DESY compute, storage and network infrastructure, various scientific areas as science with photons and accelerator development have caught up and are now dominating the demands on the DESY infrastructure resources, with significant consequences for the IT resource provisioning. In this contribution, we will present an overview of the computational, storage and network resources covering the various physics communities on site. Ranging from high-throughput computing (HTC) batch-like offline processing in the Grid and the interactive user analyses resources in the National Analysis Factory (NAF) for the HEP community, to the computing needs of accelerator development or of photon sciences such as PETRA III or the European XFEL. Since DESY is involved in these experiments and their data taking, their requirements include fast low-latency online processing for data taking and calibration as well as offline processing, thus high-performance computing (HPC) workloads, that are run on the dedicated Maxwell HPC cluster. As all communities face significant challenges due to changing environments and increasing data rates in the following years, we will discuss how this will reflect in necessary changes to the computing and storage infrastructures. We will present DESY compute cloud and container orchestration plans as a basis for infrastructure and platform services. We will show examples of Jupyter notebooks for small scale interactive analysis, as well as its integration into large scale resources such as batch systems or Spark clusters. To overcome the fragmentation of the various resources for all scientific communities at DESY, we explore how to integrate them into a seamless user experience in an Interdisciplinary Data Analysis Facility.


2021 ◽  
Vol 38 (1) ◽  
pp. 33-40
Author(s):  
Sreejita Chatterjee ◽  
Dhiren Kumar Ruidas

A significant event of marine transgression took place in Central India during Late Turonian-Coniacian. Fossiliferous marine succession of Bagh Group is one of the few carbonate successions exposed in peninsular India which was in focus of the current study for understanding this event. The signatures of this event were identified in the carbonate succession. The carbonates of Bagh Group are composed of two formations: the lower part is represented by Nodular limestone Formation which is overlain by Bryozoan limestone Formation at the top. On the basis of grain size variation and sedimentary structures, the Nodular limestone is divisible into three facies: facies ‘A’, facies ‘B’ and facies ‘C’. A hardground exists between facies B and facies C. Lack of sedimentary structures and high mud content indicates low energy depositional setting for the Nodular limestone Formation. Similarly, Bryozoan limestone Formation is divisible into five facies: facies ‘D’, facies ‘E’, facies ‘F’, facies ‘G’ and facies ‘H’ based on grain size variation and sedimentary structures. All of these five facies are fossiliferous. Glauconites are present within facies ‘G’ and have two modes of occurrence - as infilling within Bryozoan limestone and as altered feldspar. Presence of both small- and large-scale cross-stratification in Bryozoan limestone with lesser mud content are indicative of high energy shallow marine conditions. Large-scale cross-stratifications are possibly representing tidal bars while the small scale cross stratifications are formed in inter bar setting. Presence of reactivation surfaces within facies ‘E’ also supports their tidal origin. Increase in depositional energy condition is also evident from dominated by packstone facies.


Sociobiology ◽  
2018 ◽  
Vol 65 (1) ◽  
pp. 88 ◽  
Author(s):  
Rudolf H Scheffrahn ◽  
James A Chase ◽  
John R. Mangold ◽  
Henry H Hochmair

The termite family Kalotermitidae constitutes a wood-nesting termite family that accounts for about 15% of all extant termite species. In recent decades, field studies have been carried out to assess termite diversity in various wooded habitats and geographic locations. Three sampling methods have been favored expert, transect, and alate light-trap surveys. Expert collecting is not spatially quantifiable but relies on field personnel to recognize and sample termite niches. The transect method aims to standardize and quantify termite abundance and diversity. Light trapping is a passive method for sampling nocturnal alate flights. We compared our expert survey results and results of published sampling methods for their proportional yields of kalotermitid versus non-kalotermitid encounters. Using an odds ratio statistic, we found that worldwide, there is about a 50.6-fold greater likelihood of encountering a kalotermitid sample versus a non-kalotermitid using the expert survey method and a 15.3-fold greater likelihood using alate trapping than using the transect method. There is about a 3.3 -fold greater likelihood of collecting a kalotermitid specimen versus a non-kalotermitid sample using the expert survey method than using the alate trap method. Transect studies in which only termite species diversity was reported gave similar low Kalotermitidae yields. We propose that multiple biases in sampling methodology include tools, time constraints, habitat type, geographical location, topographical conditions, and human traits account for the divergent outcomes in sampling the abundance and diversity of Kalotermitidae compared to other termite families.


Sign in / Sign up

Export Citation Format

Share Document