Innovative techniques to improve cyanobacterial survival and growth in inoculated dryland soils

Author(s):  
Lisa Maggioli ◽  
Aitor Alameda ◽  
Jose Raúl Román ◽  
Sonia Chamizo ◽  
Carlotta Pagli ◽  
...  

<p>Nowadays, land use change and the impacts of climate change are accelerating land degradation processes in drylands. These regions occupy around 40% of the Earth land’s surface and their extension is likely to represent around 45% by 2050. Biocrusts (complex communities formed by bacteria, cyanobacteria, microalgae, fungi, lichens and mosses which live in the uppermost layer of soil and can cover up to 70% of the interplant areas) play a decisive role in soil stabilization and fertility in these regions, so that they have been proposed as restoration agents in degraded dryland sites, where water scarcity and the harsh environmental conditions can hinder traditional restoration based on the use of vegetation establishment. Within the different biocrust-forming organisms, the use of cyanobacteria as a biotechnological tool to combat soil degradation, is gaining increasing importance. Cyanobacteria are the pioneer colonizers of terrestrial ecosystems, they are able to resist extreme environmental conditions, i.e. high temperatures, prolonged UV radiation and nutrients scarcity. At the same time, they improve physical-chemical properties of the soil by fixing carbon and many species also the atmospheric nitrogen and by producing exopolysaccharides that strongly increase soil stability and eventually creating a more favorable environment for colonization by other organisms. Despite several laboratory studies demonstrate the effectiveness of inoculating soil with cyanobacteria and their effect in increasing soil carbon and nutrient content, few field studies are available and many of them show a limited success probably because of the harsh environmental conditions that hamper an optimal growth. In the present work, soils collected from different ecosystems  in SE Spain were inoculated with a consortium of four native cyanobacteria species: Nostoc comune, Trichocoleus desertorum, Tolypothrix distorta and Leptolyngbia sp., and  different techniques to reduce abiotic stresses were tested in outdoors conditions: 1) cyanobacteria + soil covered with a mesh made of Stipa tenacissima, 2) cyanobacteria+ Plantago-based stabilizer amendment, and 3) cyanobacteria + sewage sludge (incorporated as an organic amendment) . The application of plant-based ameliorating strategies resulted in a higher chlorophyll a content, which reflects an improvement of cyanobacterial growth compared to the inoculation lacking the application of ameliorating techniques. The soil albedo also decreased due to surface darkening, thus also indicating a higher cyanobacterial growth in these treatments. Wind tunnel experiments also demonstrated a lower susceptibility to wind erosion in the cyanobacteria-inoculated soils combined with application of the plant mesh or the Plantago amendment. These results highlight the importance of using plant-based amelioration techniques to reduce abiotic stresses, especially in the early stages of soil colonization after cyanobacteria inoculation. Regarding the use of sewage sludge, it was demonstrated that their application at low doses improved cyanobacteria growth, which was reflected in an increase in chlorophyll a content as well as in a significant increase of aggregate stability and reduced soil susceptibility to wind erosion. This study shows promising results to enhance cyanobacterial growth and prevent cyanobacteria inoculum loss under natural conditions. Ongoing experiments will evaluate the effectiveness of these strategies under field conditions.</p>

Soil Systems ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 47
Author(s):  
Chiara Turioni ◽  
Giacomo Guerrini ◽  
Andrea Squartini ◽  
Francesco Morari ◽  
Michele Maggini ◽  
...  

The development of functional materials that promote the infiltration and retention of water and the controlled release of fertilizers and nutrients in soil is of interest in agriculture. In this context, hydrogels, three-dimensional polymeric structures able to absorb high amounts of water in their swelling process, play an important role. The swelling ability of hydrogels depends on their crosslinking: the higher the crosslinking degree, the higher the number of interactions in the structure, the lower the swelling response. In this work, we describe biodegradable hydrogels composed of natural feedstocks: cellulose, clay minerals, and humic acids, designed to (i) protect, hydrate, and help germinating seedlings to root even in unfavorable conditions; (ii) sustainably contribute to soil fertility in terms of moisture and nutrients; and (iii) act as a nutritive and protective coating for the seeds. Upon assessing the correlations between curing process and swelling degree (SW), we evaluated the degradation of new biodegradable hydrogels as a function of the synthesis parameters (swelling degree and composition) and environmental conditions (type of soil and water amount for the hydration of the hydrogels). The term curing is hereafter referred to the operation of baking the ingredients at given combinations of time and temperature to obtain a dry hydrogel. The results show that the environmental parameters considered, i.e., amount of hydration water and physical and chemical properties of the soil, play a more decisive role in determining the stability of these hydrogels in soil than their synthesis parameters, such as the composition and the swelling degree.


1994 ◽  
Vol 98 (31) ◽  
pp. 7725-7735 ◽  
Author(s):  
H.-C. Chang ◽  
R. Jankowiak ◽  
N. R. S. Reddy ◽  
C. F. Yocum ◽  
R. Picorel ◽  
...  

Author(s):  
Ishowriya Yumnam

In this review article the usage of waste sewage sludge and the biomass ash for improving the engineering and non-engineering properties’ of both concrete and soil are discussed in detail. Numerous past research works were studied in detail so as to predict the behavior of biomass ash and waste sewage sludge when used for the stabilization process of soil and concrete. Past studies related to the usage of stabilized sewage sludge and biomass ash were studied in a detailed manner and depending upon the past studies several conclusions has been drawn which are discussed further. Several studies related to the usage of the waste sewage sludge for improving soil physical, chemical and biological properties showed that the usage of waste sewage sludge improve the physical properties, chemical properties, macro-nutriential properties and micro-nutriential properties up to a great extent. Depending upon the results of the past studies it can be concluded that the usage of sewage sludge has positive impact over all the properties of soil and this waste should be utilized in improving the properties of soil rather than dumping. Numerous studies related to the usage of the biomass ash showed that biomass ash has positive impact over both soil as well as concrete. Studies related to the usage of the biomass ash in soil showed that there was a positive response of the stabilized soil after its stabilization with the biomass ash. Studies related to the usage of the biomass ash in concrete showed that the biomass ash can be used up to 10 percent replacement of the ordinary Portland cement so as to attain maximum strength results from it.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Bruno Degaspari Minardi ◽  
Ana Paula Lorenzen Voytena ◽  
Marisa Santos ◽  
Áurea Maria Randi

Elaphoglossum luridum(Fée) Christ. (Dryopteridaceae) is an epiphytic fern of the Atlantic Forest (Brazil). Anatomical and physiological studies were conducted to understand how this plant responds to water stress. TheE. luridumfrond is coriaceus and succulent, presenting trichomes, relatively thick cuticle, and sinuous cell walls in both abaxial and adaxial epidermis. Three treatments were analyzed: control, water deficit, and abscisic acid (ABA). Physiological studies were conducted through analysis of relative water content (RWC), photosynthetic pigments, chlorophyll a fluorescence, and malate content. No changes in RWC were observed among treatments; however, significant decreases in chlorophyll a content and photosynthetic parameters, including optimal irradiance (Iopt) and maximum electron transport rate (ETRmax), were determined by rapid light curves (RLC). No evidence of crassulacean acid metabolism (CAM) pathway was observed inE. luridumin response to either water deficit or exogenous application of ABA. On the other hand, malate content decreased in theE. luridumfrond after ABA treatment, seeming to downregulate malate metabolism at night, possibly through tricarboxylic acid (TCA) cycle regulation.


2017 ◽  
pp. 179-183
Author(s):  
Judit Szűcsné Szolomájer ◽  
Marianna Makádi ◽  
Ibolya Demeter ◽  
Attila Tomócsik ◽  
Tibor Aranyos ◽  
...  

Composting of sewage sludges makes easier the utilization of sewage sludge in the agriculture and the composts in good quality could increase the nutrient content of soil. Due to the composting process, the sewage sludge composts with high organic matter content can be utilized in the same way as other composts or farmyard manure.Composts produced in different ways have different effects on the physical, chemical and biological properties of different soils, although their positive effects have already proved in the literature. In our study the effects of composts from different composting processes were investigated in soil-plant systems. The different physical and chemical properties of the two examined soil types (arenosol and chernozem)strongly influenced the nutrient supply capacity of composts which could be characterized by the growth of ray-grass as a test plant in the pot experiment. In this work we examined the effects of three different composts on the green weight of plants on the fourth and eighth weeks after the treatment and sowing.


2016 ◽  
Vol 11 (3) ◽  
pp. 409
Author(s):  
J. Tri Astuti ◽  
Lies Sriwuryandari ◽  
Ekoputro Agung Putro ◽  
T. Sembiring

Micro-algae are to be an attractive way to produce bio-diesel due to high photosynthetic yields and lipid accumulation in cells. This high productivity combined with possibility to uptake CO2 stimulated its utilization as a biological mitigation method of CO2, at once as an alternative renewable source of energy. Growth characteristics and chemical composition of micro-algae can be altered by culture environment. Nutrient sufficiency,included magnesium element (Mg2+) is important factors on overall biochemical composition. In study, Nannochloropsis sp was cultivated in Erlenmeyer 250 ml containing 200 ml f/2 medium. There are three groups of treatment with different levelof magnesium (Mg2+), i.e. 0 (M0); 0.1mgL-1 (M1); and 1.0 mgL-1 (M2). All treatment was designed triplicate in batch system. Culture was then aerated continuously with sterile atmospheric air (1.5 L.min-1). Cells were harvested on 25th day after inoculation and analyzed. Data showed that Chlorophyll-a increased linearly with time and maximum at 18th days of growth period, i.e. 23.57; 26.44; and 27.74mgL-1, for M0; M1; and M2,respectively. Chlorophyll-a content decreased significantly when pH dropped to 5-6.Enrichment with Mg2+ increased the chlorophyll-a content 12.2-17.7%. Dry cell reached 375-400mgL-1 in all treatment. Lipid content of Nannochloropsis sp in control (M0) is 55.3%, higher than M1 and M2. Saturated fatty acid tends to increase from 80.70 (M0)to 96.70 (M1) and 94.53% (M2). Fatty acid of M0 and M1 was composed dominantly by palmitic acid (C16:0), i.e. 49.19-70.75% total fatty acids. Meanwhile, M2 treatment was dominantly by lauric acid (C12:0), i.e. 32.98%.Keywords: CO2 biological mitigation, chlorophyll-a, fatty acid, lipid, agnesium,microalgae, Nannochloropsis sp, photosynthesis.


Sign in / Sign up

Export Citation Format

Share Document