Loss of root-soil contact due to root and root hair shrinkage

Author(s):  
Patrick Duddek ◽  
Mutez Ahmed ◽  
Nicolai Koebernick ◽  
Luise Ohmann ◽  
Goran Lovric ◽  
...  

<p><span>Due to global warming, future agriculture will have to face increasing temperatures, more frequent and extreme drought events and consequently water and nutrient scarcity. Thus, it is necessary to improve our understanding of how plants deal with dry conditions. Since there is still a lack of knowledge concerning below ground feedbacks of plants to drought, we are particularly interested in the response of below ground organs to soil drying.</span></p><p><span>Hence, the objective of our study was to determine morphological responses of roots and root hairs to soil drying in situ.<br></span><span>For this purpose, we have grown maize plants (Zea maize wildtype) in seedling holder microcosms for 8 days before harvesting and performing high-resolution synchrotron X-ray CT in order to visualize root compartements as well as the elongated root hairs (Koebernick et al. 2017). The segmented images served as basis for the quantification of our observations.</span></p><p><span>The results revealed that not only roots (Carminati et al. 2012) but also root hairs lose turgidity under dry soil conditions. This shrinkage of hairs occurs at high soil water potentials and reduces the surface and soil contact area of roots tremendously. Root hair shrinkage is the first step in a sequence of responses to progressive soil drying. The follow up processes within this sequence are the formation of cortical lacunae and root shrinkage resulting in air filled gaps at the root-soil interface. Severe cavitation within the xylem was not observed at the corresponding soil water potentials meaning that xylem embolism occurs at even lower potentials. This leads to the conclusion that there is a severe loss of root-soil contact and consequently of hydraulic conductivity at the root-soil interface before xylem cavitates and reduces water as well as nutrient fluxes in the radial root direction. <br></span><span>As not only roots but also root hairs take up nutrients and release exudates (Holz et al. 2017), they are assumed to be an important trait of the rhizosphere for both nutrient uptake and microbial activity. Furthermore, they increase the radial extent of the rhizosphere and although it is not yet clear if shrunk root hairs are inactive in exudation and nutrient uptake, their enormous shrinkage due to soil drying might limit rhizosphere processes.</span></p><p><span>In summary, losses of root-soil contact due to root and particularly root hair shrinkage are profound and occur at high water potentials. </span></p><p> </p><p><span>References</span></p><ul><li><span>Carminati, A., Vetterlein, D., Koebernick, N., Blaser, S., Weller, U., & Vogel, H.-J. (2012). Do roots mind the gap? Plant and Soil, 367(1–2), 651–661. https://doi.org/10.1007/s11104-012-1496-9</span></li> <li><span>Holz, M., Zarebanadkouki, M., Kuzyakov, Y., Pausch, J., & Carminati, A. (2017). Root hairs increase rhizosphere extension and carbon input to soil. Annals of Botany, 121(1), 61–69. https://doi.org/10.1093/aob/mcx127</span></li> <li><span>Koebernick, N., Daly, K. R., Keyes, S. D., George, T. S., Brown, L. K., Raffan, A., Cooper, L. J., Naveed, M., Bengough, A. G., Sinclair, I., Hallett, P. D., & Roose, T. (2017). High-resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation. New Phytologist, 216(1), 124–135. https://doi.org/10.1111/nph.14705 </span></li> </ul><p> </p>

2010 ◽  
Vol 339 (1-2) ◽  
pp. 125-135 ◽  
Author(s):  
W. Ashley Hammac ◽  
William L. Pan ◽  
Ron P. Bolton ◽  
Rich T. Koenig

1993 ◽  
Vol 44 (1) ◽  
pp. 85 ◽  
Author(s):  
DG Roberts

The seagrass Halophila ovalis normally produces one mature root, covered with a permanent mat of root hairs, per node. In this study, the development of the root hairs increased the effective root surface absorptive area by 215%. Of the root surface examined, 39% was devoted to root-hair production. Epidermal cells that produced root hairs contained more cytoplasm, endoplasmic reticulum and Golgi bodies than did adjacent hairless cells. In addition to appearing to be more metabolically active, root-hair-producing cells had a greater number of plasmodesmatal connections with the underlying outer cortical cells than did adjacent cells that did not produce root hairs. This would suggest that cells that produce root hairs play a more active role in nutrient uptake and exchange than do other cortical cells.


Author(s):  
Susan B.G. Debaene ◽  
John S. Gardner ◽  
Phil S. Allen

The coleorhiza is a nonvascular sheath that encloses the embryonic radicle in Poaceae, and is generally the first tissue to emerge during germination. Delicate hairlike extensions develop from some coleorhiza cells prior to radicle emergence. Similar to root hairs, coleorhiza hairs are extremely sensitive to desiccation and are damaged by exposure to negative water potentials. The coleorhiza of Lolium perenne is somewhat spherical when first visible, after which a knob forms at a right angle to the caryopsis due to inner pressure from the elongating radicle. This knob increases in length until the radicle finally punctures the coleorhiza. Standard fixation procedures cause severe desiccation of coleorhiza cells and hairs, making morphological study of the coleorhiza difficult. This study was conducted to determine a more successful process for coleorhiza preservation.


Author(s):  
K.S. Walters ◽  
R.D. Sjolund ◽  
K.C. Moore

Callose, B-1,3-glucan, a component of cell walls, is associated with phloem sieve plates, plasmodesmata, and other cell wall structures that are formed in response to wounding or infection. Callose reacts with aniline blue to form a fluorescent complex that can be recognized in the light microscope with ultraviolet illumination. We have identified callose in cell wall protuberances that are formed spontaneously in suspension-cultured cells of S. tortuosus and in the tips of root hairs formed in sterile callus cultures of S. tortuosus. Callose deposits in root hairs are restricted to root hair tips which appear to be damaged or deformed, while normal root hair tips lack callose deposits. The callose deposits found in suspension culture cells are restricted to regions where unusual outgrowths or protuberances are formed on the cell surfaces, specifically regions that are the sites of new cell wall formation.Callose formation has been shown to be regulated by intracellular calcium levels.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 480 ◽  
Author(s):  
Bushra Niamat ◽  
Muhammad Naveed ◽  
Zulfiqar Ahmad ◽  
Muhammad Yaseen ◽  
Allah Ditta ◽  
...  

Soil salinity and sodicity are among the main problems for optimum crop production in areas where rainfall is not enough for leaching of salts out of the rooting zone. Application of organic and Ca-based amendments have the potential to increase crop yield and productivity under saline–alkaline soil environments. Based on this hypothesis, the present study was conducted to evaluate the potential of compost, Ca-based fertilizer industry waste (Ca-FW), and Ca-fortified compost (Ca-FC) to increase growth and yield of maize under saline–sodic soil conditions. Saline–sodic soil conditions with electrical conductivity (EC) levels (1.6, 5, and 10 dS m−1) and sodium adsorption ratio (SAR) = 15, were developed by spiking soil with a solution containing NaCl, Na2SO4, MgSO4, and CaCl2. Results showed that soil salinity and sodicity significantly reduced plant growth, yield, physiological, and nutrient uptake parameters. However, the application of Ca-FC caused a remarkable increase in the studied parameters of maize at EC levels of 1.6, 5, and 10 dS m−1 as compared to the control. In addition, Ca-FC caused the maximum decrease in Na+/K+ ratio in shoot up to 85.1%, 71.79%, and 70.37% at EC levels of 1.6, 5, and 10 dS m−1, respectively as compared to the control treatment. Moreover, nutrient uptake (NPK) was also significantly increased with the application of Ca-FC under normal as well as saline–sodic soil conditions. It is thus inferred that the application of Ca-FC could be an effective amendment to enhance growth, yield, physiology, and nutrient uptake in maize under saline–sodic soil conditions constituting the novelty of this work.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 708
Author(s):  
Phanthasin Khanthavong ◽  
Shin Yabuta ◽  
Hidetoshi Asai ◽  
Md. Amzad Hossain ◽  
Isao Akagi ◽  
...  

Flooding and drought are major causes of reductions in crop productivity. Root distribution indicates crop adaptation to water stress. Therefore, we aimed to identify crop roots response based on root distribution under various soil conditions. The root distribution of four crops—maize, millet, sorghum, and rice—was evaluated under continuous soil waterlogging (CSW), moderate soil moisture (MSM), and gradual soil drying (GSD) conditions. Roots extended largely to the shallow soil layer in CSW and grew longer to the deeper soil layer in GSD in maize and sorghum. GSD tended to promote the root and shoot biomass across soil moisture status regardless of the crop species. The change of specific root density in rice and millet was small compared with maize and sorghum between different soil moisture statuses. Crop response in shoot and root biomass to various soil moisture status was highest in maize and lowest in rice among the tested crops as per the regression coefficient. Thus, we describe different root distributions associated with crop plasticity, which signify root spread changes, depending on soil water conditions in different crop genotypes as well as root distributions that vary depending on crop adaptation from anaerobic to aerobic conditions.


1988 ◽  
Vol 68 (3) ◽  
pp. 569-576 ◽  
Author(s):  
YADVINDER SINGH ◽  
E. G. BEAUCHAMP

Two laboratory incubation experiments were conducted to determine the effect of initial soil water potential on the transformation of urea in large granules to nitrite and nitrate. In the first experiment two soils varying in initial soil water potentials (− 70 and − 140 kPa) were incubated with 2 g urea granules with and without a nitrification inhibitor (dicyandiamide) at 15 °C for 35 d. Only a trace of [Formula: see text] accumulated in a Brookston clay (pH 6.0) during the transformation of urea in 2 g granules. Accumulation of [Formula: see text] was also small (4–6 μg N g−1) in Conestogo silt loam (pH 7.6). Incorporation of dicyandiamide (DCD) into the urea granule at 50 g kg−1 urea significantly reduced the accumulation of [Formula: see text] in this soil. The relative rate of nitrification in the absence of DCD at −140 kPa water potential was 63.5% of that at −70 kPa (average of two soils). DCD reduced the nitrification of urea in 2 g granules by 85% during the 35-d period. In the second experiment a uniform layer of 2 g urea was placed in the center of 20-cm-long cores of Conestogo silt loam with three initial water potentials (−35, −60 and −120 kPa) and the soil was incubated at 15 °C for 45 d. The rate of urea hydrolysis was lowest at −120 kPa and greatest at −35 kPa. Soil pH in the vicinity of the urea layer increased from 7.6 to 9.1 and [Formula: see text] concentration was greater than 3000 μg g−1 soil. There were no significant differences in pH or [Formula: see text] concentration with the three soil water potential treatments at the 10th day of the incubation period. But, in the latter part of the incubation period, pH and [Formula: see text] concentration decreased with increasing soil water potential due to a higher rate of nitrification. Diffusion of various N species including [Formula: see text] was probably greater with the highest water potential treatment. Only small quantities of [Formula: see text] accumulated during nitrification of urea – N. Nitrification of urea increased with increasing water potential. After 35 d of incubation, 19.3, 15.4 and 8.9% of the applied urea had apparently nitrified at −35, −60 and −120 kPa, respectively. Nitrifier activity was completely inhibited in the 0- to 2-cm zone near the urea layer for 35 days. Nitrifier activity increased from an initial level of 8.5 to 73 μg [Formula: see text] in the 3- to 7-cm zone over the 35-d period. Nitrifier activity also increased with increasing soil water potential. Key words: Urea transformation, nitrification, water potential, large granules, nitrifier activity, [Formula: see text] production


Geoderma ◽  
2021 ◽  
Vol 402 ◽  
pp. 115264
Author(s):  
Enoch V.S. Wong ◽  
Philip R. Ward ◽  
Daniel V. Murphy ◽  
Matthias Leopold ◽  
Louise Barton

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 150 ◽  
Author(s):  
Katarzyna Retzer ◽  
Wolfram Weckwerth

Plant growth and productivity are orchestrated by a network of signaling cascades involved in balancing responses to perceived environmental changes with resource availability. Vascular plants are divided into the shoot, an aboveground organ where sugar is synthesized, and the underground located root. Continuous growth requires the generation of energy in the form of carbohydrates in the leaves upon photosynthesis and uptake of nutrients and water through root hairs. Root hair outgrowth depends on the overall condition of the plant and its energy level must be high enough to maintain root growth. TARGET OF RAPAMYCIN (TOR)-mediated signaling cascades serve as a hub to evaluate which resources are needed to respond to external stimuli and which are available to maintain proper plant adaptation. Root hair growth further requires appropriate distribution of the phytohormone auxin, which primes root hair cell fate and triggers root hair elongation. Auxin is transported in an active, directed manner by a plasma membrane located carrier. The auxin efflux carrier PIN-FORMED 2 is necessary to transport auxin to root hair cells, followed by subcellular rearrangements involved in root hair outgrowth. This review presents an overview of events upstream and downstream of PIN2 action, which are involved in root hair growth control.


Sign in / Sign up

Export Citation Format

Share Document