German Near-Real Time Ensemble Hydroclimate Forecasting System

Author(s):  
Husain Najafi ◽  
Stephan Thober ◽  
Oldrich Rakovec ◽  
Pallav Kumar Shrestha ◽  
Luis Samaniego-Eguiguren

<p>Helmholtz Centres are developing a research infrastructure in Germany to investigate the interactions of short-term events and long-term trends across Earth compartments under the Modular Observation Solutions for Earth System initiate (MOSES- https://www.ufz.de/moses/). A near-real time hydroclimate forecasting system at sub-seasonal to seasonal time range (HS2S) is developed for MOSES to provide tailored information for early warning of extreme events. </p><p>Here, we introduce two components of the HS2S which benefits from operational forecasts provided by the European Center for Medium-range Weather Forecast (ECMWF). The first component is weekly averaged forecasts of two atmospheric variables (total precipitation and maximum air temperature) which are bias corrected using a trend-preserving approach. The second component is German hydrological forecasting system. We use the mesoscale Hydrological Model (mHM- https://www.ufz.de/mhm) for generating hydrological initial conditions and ensemble forecasting. The same approach by German Drought Monitor (www.ufz.de/duerremonitor) is applied to interpolate near-real time in-situ observations from the German Meteorological Service (DWD) into 1-km grids. Then 51 real-time atmospheric daily ensemble forecasts from ECMWF ensemble extended product are bias corrected to generate of soil moisture and streamflow forecasts up to 30-day in advance. By post-processing mHM ensemble forecasts, an overview of drought conditions for the next 30-days horizon is disseminated online over Germany (https://www.ufz.de/moses/index.php?en=47304). Hydroclimate forecast are updated operationally twice a week to support MOSES event-driven campaigns for flood, drought and heat waves and to understand the predictability and skill of near-real time hydroclimate forecasts in Central Europe based on the state-of-the-art models and tools.  </p>

Author(s):  
Peter Düben ◽  
Nils Wedi ◽  
Sami Saarinen ◽  
Christian Zeman

<p>Global simulations with 1.45 km grid-spacing are presented that were performed with the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Simulations are uncoupled (without ocean, sea-ice or wave model), using 62 or 137 vertical levels and the full complexity of weather forecast simulations including recent date initial conditions, real-world topography, and state-of-the-art physical parametrizations and diabatic forcing including shallow convection, turbulent diffusion, radiation and five categories for the water substance (vapour, liquid, ice, rain, snow). Simulations are evaluated with regard to computational efficiency and model fidelity. Scaling results are presented that were performed on the fastest supercomputer in Europe - Piz Daint (Top 500, Nov 2018). Important choices for the model configuration at this unprecedented resolution for the IFS are discussed such as the use of hydrostatic and non-hydrostatic equations or the time resolution of physical phenomena which is defined by the length of the time step. </p><p>Our simulations indicate that the IFS model — based on spectral transforms with a semi-implicit, semi-Lagrangian time-stepping scheme in contrast to more local discretization techniques — can provide a meaningful baseline reference for O(1) km global simulations.</p>


2020 ◽  
Author(s):  
Trine Jahr Hegdahl ◽  
Kolbjørn Engeland ◽  
Ingelin Steinsland ◽  
Andrew Singleton

<p>In this work the performance of different pre- and postprocessing methods and schemes for ensemble forecasts were compared for a flood warning system.  The ECMWF ensemble forecasts of temperature (T) and precipitation (P) were used to force the operational hydrological HBV model, and we estimated 2 years (2014 and 2015) of daily retrospect streamflow forecasts for 119 Norwegian catchments. Two approaches were used to preprocess the temperature and precipitation forecasts: 1) the preprocessing provided by the operational weather forecasting service, that includes a quantile mapping method for temperature and a zero-adjusted gamma distribution for precipitation, applied to the gridded forecasts, 2)  Bayesian model averaging (BMA) applied to the catchment average values of temperature and precipitation. For the postprocessing of catchment streamflow forecasts, BMA was used. Streamflow forecasts were generated for fourteen schemes with different combinations of the raw, pre- and postprocessing approaches for the two-year period for lead-time 1-9 days.</p><p>The forecasts were evaluated for two datasets: i) all streamflow and ii) flood events. The median flood represents the lowest flood warning level in Norway, and all streamflow observations above median flood are included in the flood event evaluation dataset. We used the continuous ranked probability score (CRPS) to evaluate the pre- and postprocessing schemes. Evaluation based on all streamflow data showed that postprocessing improved the forecasts only up to a lead-time of 2 days, while preprocessing T and P using BMA improved the forecasts for 50% - 90% of the catchments beyond 2 days lead-time. However, with respect to flood events, no clear pattern was found, although the preprocessing of P and T gave better CRPS to marginally more catchments compared to the other schemes.</p><p>In an operational forecasting system, warnings are issued when forecasts exceed defined thresholds, and confidence in warnings depends on the hit and false alarm ratio. By analyzing the hit ratio adjusted for false alarms, we found that many of the forecasts seemed to perform equally well. Further, we found that there were large differences in the ability to issue correct warning levels between spring and autumn floods. There was almost no ability to predict autumn floods beyond 2 days, whereas the spring floods had predictability up to 9 days for many events and catchments.</p><p>The results underline differences in the predictability of floods depending on season and the flood generating processes, i.e. snowmelt affected spring floods versus rain induced autumn floods. The results moreover indicate that the ensemble forecasts are less good at predicting correct autumn precipitation, and more emphasis could be put on finding a better method to optimize autumn flood predictions. To summarize we find that the flood forecasts will benefit from pre-/postprocessing, the optimal processing approaches do, however, depend on region, catchment and season.</p>


2016 ◽  
Author(s):  
Harm-Jan F. Benninga ◽  
Martijn J. Booij ◽  
Renata J. Romanowicz ◽  
Tom H. M. Rientjes

Abstract. The paper presents a methodology to give insight in the performance of ensemble streamflow forecasting systems. We developed an ensemble forecasting system for the Biała Tarnowska, a mountainous river catchment in southern Poland, and analysed the performance for lead times from 1 day to 10 days for low, medium and high streamflow and related runoff generating processes. Precipitation and temperature forecasts from the European Centre for Medium-Range Weather Forecasts serve as input to a deterministic lumped hydrological (HBV) model. Due to inconsistent bias, the best streamflow forecasts were obtained without pre- and post-processing of the meteorological and streamflow forecasts. Best forecast skill, relative to alternative forecasts based on historical measurements of precipitation and temperature, is shown for high streamflow and for snow accumulation low streamflow events. Forecasts of medium streamflow events and low streamflow events generated by precipitation deficit show less skill. To improve the performance of the forecasting system for high streamflow events, in particular the meteorological forecasts require improvement. For low streamflow forecasts, the hydrological model should be improved. The study recommends improving the reliability of the ensemble streamflow forecasts by including the uncertainties in hydrological model parameters and initial conditions, and by improving the dispersion of the meteorological input forecasts.


Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 188
Author(s):  
Rodrigo Valdés-Pineda ◽  
Juan B. Valdés ◽  
Sungwook Wi ◽  
Aleix Serrat-Capdevila ◽  
Tirthankar Roy

The combination of Hydrological Models and high-resolution Satellite Precipitation Products (SPPs) or regional Climatological Models (RCMs), has provided the means to establish baselines for the quantification, propagation, and reduction in hydrological uncertainty when generating streamflow forecasts. This study aimed to improve operational real-time streamflow forecasts for the Upper Zambezi River Basin (UZRB), in Africa, utilizing the novel Variational Ensemble Forecasting (VEF) approach. In this regard, we describe and discuss the main steps required to implement, calibrate, and validate an operational hydrologic forecasting system (HFS) using VEF and Hydrologic Processing Strategies (HPS). The operational HFS was constructed to monitor daily streamflow and forecast them up to eight days in the future. The forecasting process called short- to medium-range (SR2MR) streamflow forecasting was implemented using real-time rainfall data from three Satellite Precipitation Products or SPPs (The real-time TRMM Multisatellite Precipitation Analysis TMPA-RT, the NOAA CPC Morphing Technique CMORPH, and the Precipitation Estimation from Remotely Sensed data using Artificial Neural Networks, PERSIANN) and rainfall forecasts from the Global Forecasting System (GFS). The hydrologic preprocessing (HPR) strategy considered using all raw and bias corrected rainfall estimates to calibrate three distributed hydrological models (HYMOD_DS, HBV_DS, and VIC 4.2.b). The hydrologic processing (HP) strategy considered using all optimal parameter sets estimated during the calibration process to increase the number of ensembles available for operational forecasting. Finally, inference-based approaches were evaluated during the application of a hydrological postprocessing (HPP) strategy. The final evaluation and reduction in uncertainty from multiple sources, i.e., multiple precipitation products, hydrologic models, and optimal parameter sets, was significantly achieved through a fully operational implementation of VEF combined with several HPS. Finally, the main challenges and opportunities associated with operational SR2MR streamflow forecasting using VEF are evaluated and discussed.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1688 ◽  
Author(s):  
Riccardo Hénin ◽  
Margarida Liberato ◽  
Alexandre Ramos ◽  
Célia Gouveia

An assessment of daily accumulated precipitation during extreme precipitation events (EPEs) occurring over the period 2000–2008 in the Iberian Peninsula (IP) is presented. Different sources for precipitation data, namely ERA-Interim and ERA5 reanalysis by the European Centre for Medium-Range Weather Forecast (ECMWF) and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), both in near-real-time and post-real-time releases, are compared with the best ground-based high-resolution (0.2° × 0.2°) gridded precipitation dataset available for the IP (IB02). In this study, accuracy metrics are analysed for different quartiles of daily precipitation amounts, and additional insights are provided for a subset of EPEs extracted from an objective ranking of extreme precipitation during the extended winter period (October to March) over the IP. Results show that both reanalysis and multi-satellite datasets overestimate (underestimate) daily precipitation sums for the least (most) extreme events over the IP. In addition, it is shown that the TRMM TMPA precipitation estimates from the near-real-time product may be considered for EPEs assessment over these latitudes. Finally, it is found that the new ERA5 reanalysis accounts for large improvements over ERA-Interim and it also outperforms the satellite-based datasets.


2017 ◽  
Vol 21 (10) ◽  
pp. 5273-5291 ◽  
Author(s):  
Harm-Jan F. Benninga ◽  
Martijn J. Booij ◽  
Renata J. Romanowicz ◽  
Tom H. M. Rientjes

Abstract. The paper presents a methodology that gives insight into the performance of ensemble streamflow-forecasting systems. We have developed an ensemble forecasting system for the Biała Tarnowska, a mountainous river catchment in southern Poland, and analysed the performance for lead times ranging from 1 to 10 days for low, medium and high streamflow and different hydrometeorological conditions. Precipitation and temperature forecasts from the European Centre for Medium-Range Weather Forecasts served as inputs to a deterministic lumped hydrological (HBV) model. Due to a non-homogeneous bias in time, pre- and post-processing of the meteorological and streamflow forecasts are not effective. The best forecast skill, relative to alternative forecasts based on meteorological climatology, is shown for high streamflow and snow accumulation low-streamflow events. Forecasts of medium-streamflow events and low-streamflow events under precipitation deficit conditions show less skill. To improve performance of the forecasting system for high-streamflow events, the meteorological forecasts are most important. Besides, it is recommended that the hydrological model be calibrated specifically on low-streamflow conditions and high-streamflow conditions. Further, it is recommended that the dispersion (reliability) of the ensemble streamflow forecasts is enlarged by including the uncertainties in the hydrological model parameters and the initial conditions, and by enlarging the dispersion of the meteorological input forecasts.


2013 ◽  
Vol 17 (10) ◽  
pp. 3853-3869 ◽  
Author(s):  
K. Liechti ◽  
L. Panziera ◽  
U. Germann ◽  
M. Zappa

Abstract. This study explores the limits of radar-based forecasting for hydrological runoff prediction. Two novel radar-based ensemble forecasting chains for flash-flood early warning are investigated in three catchments in the southern Swiss Alps and set in relation to deterministic discharge forecasts for the same catchments. The first radar-based ensemble forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second ensemble forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialised with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 h between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. A clear preference was found for the ensemble approach. Discharge forecasts perform better when forced by NORA and REAL-C2 rather then by deterministic weather radar data. Moreover, it was observed that using an ensemble of initial conditions at the forecast initialisation, as in REAL-C2, significantly improved the forecast skill. These forecasts also perform better then forecasts forced by ensemble rainfall forecasts (NORA) initialised form a single initial condition of the hydrological model. Thus the best results were obtained with the REAL-C2 forecasting chain. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic precipitation.


2015 ◽  
Vol 12 (1) ◽  
pp. 37-44 ◽  
Author(s):  
L. Tiriolo ◽  
R. C. Torcasio ◽  
S. Montesanti ◽  
A. M. Sempreviva ◽  
C. R. Calidonna ◽  
...  

Abstract. The importance of wind power forecast is commonly recognized because it represents a useful tool for grid integration and facilitates the energy trading. This work considers an example of power forecast for a wind farm in the Apennines in Central Italy. The orography around the site is complex and the horizontal resolution of the wind forecast has an important role. To explore this point we compared the performance of two 48 h wind power forecasts using the winds predicted by the Regional Atmospheric Modeling System (RAMS) for the year 2011. The two forecasts differ only for the horizontal resolution of the RAMS model, which is 3 km (R3) and 12 km (R12), respectively. Both forecasts use the 12 UTC analysis/forecast cycle issued by the European Centre for Medium range Weather Forecast (ECMWF) as initial and boundary conditions. As an additional comparison, the results of R3 and R12 are compared with those of the ECMWF Integrated Forecasting System (IFS), whose horizontal resolution over Central Italy is about 25 km at the time considered in this paper. v Because wind observations were not available for the site, the power curve for the whole wind farm was derived from the ECMWF wind operational analyses available at 00:00, 06:00, 12:00 and 18:00 UTC for the years 2010 and 2011. Also, for R3 and R12, the RAMS model was used to refine the horizontal resolution of the ECMWF analyses by a two-years hindcast at 3 and 12 km horizontal resolution, respectively. The R3 reduces the RMSE of the predicted wind power of the whole 2011 by 5% compared to R12, showing an impact of the meteorological model horizontal resolution in forecasting the wind power for the specific site.


2022 ◽  
Vol 26 (1) ◽  
pp. 197-220
Author(s):  
Emixi Sthefany Valdez ◽  
François Anctil ◽  
Maria-Helena Ramos

Abstract. This study aims to decipher the interactions of a precipitation post-processor and several other tools for uncertainty quantification implemented in a hydrometeorological forecasting chain. We make use of four hydrometeorological forecasting systems that differ by how uncertainties are estimated and propagated. They consider the following sources of uncertainty: system A, forcing, system B, forcing and initial conditions, system C, forcing and model structure, and system D, forcing, initial conditions, and model structure. For each system's configuration, we investigate the reliability and accuracy of post-processed precipitation forecasts in order to evaluate their ability to improve streamflow forecasts for up to 7 d of forecast horizon. The evaluation is carried out across 30 catchments in the province of Quebec (Canada) and over the 2011–2016 period. Results are compared using a multicriteria approach, and the analysis is performed as a function of lead time and catchment size. The results indicate that the precipitation post-processor resulted in large improvements in the quality of forecasts with regard to the raw precipitation forecasts. This was especially the case when evaluating relative bias and reliability. However, its effectiveness in terms of improving the quality of hydrological forecasts varied according to the configuration of the forecasting system, the forecast attribute, the forecast lead time, and the catchment size. The combination of the precipitation post-processor and the quantification of uncertainty from initial conditions showed the best results. When all sources of uncertainty were quantified, the contribution of the precipitation post-processor to provide better streamflow forecasts was not remarkable, and in some cases, it even deteriorated the overall performance of the hydrometeorological forecasting system. Our study provides an in-depth investigation of how improvements brought by a precipitation post-processor to the quality of the inputs to a hydrological forecasting model can be cancelled along the forecasting chain, depending on how the hydrometeorological forecasting system is configured and on how the other sources of hydrological forecasting uncertainty (initial conditions and model structure) are considered and accounted for. This has implications for the choices users might make when designing new or enhancing existing hydrometeorological ensemble forecasting systems.


2014 ◽  
Vol 18 (9) ◽  
pp. 3353-3366 ◽  
Author(s):  
A. Ceppi ◽  
G. Ravazzani ◽  
C. Corbari ◽  
R. Salerno ◽  
S. Meucci ◽  
...  

Abstract. In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in European areas which traditionally have an abundant supply of water, such as the Po Valley in northern Italy. In dry periods, water shortage problems can be enhanced by conflicting uses of water, such as irrigation, industry and power production (hydroelectric and thermoelectric). Furthermore, in the last decade the social perspective in relation to this issue has been increasing due to the possible impact of climate change and global warming scenarios which emerge from the IPCC Fifth Assessment Report (IPCC, 2013). Hence, the increased frequency of drought periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the PREGI real-time drought forecasting system; PREGI is an Italian acronym that means "hydro-meteorological forecast for irrigation management". The system, planned as a tool for irrigation optimization, is based on meteorological ensemble forecasts (20 members) at medium range (30 days) coupled with hydrological simulations of water balance to forecast the soil water content on a maize field in the Muzza Bassa Lodigiana (MBL) consortium in northern Italy. The hydrological model was validated against measurements of latent heat flux acquired by an eddy-covariance station, and soil moisture measured by TDR (time domain reflectivity) probes; the reliability of this forecasting system and its benefits were assessed in the 2012 growing season. The results obtained show how the proposed drought forecasting system is able to have a high reliability of forecast at least for 7–10 days ahead of time.


Sign in / Sign up

Export Citation Format

Share Document