Formation of Amorphous Materials Causes Parallel Brittle-viscous Flow of Crustal Rocks

Author(s):  
Matej Pec ◽  
Saleh Al Nasser

<p>Relative motion of tectonic plates is accommodated along lithosphere-scale shear zones. The strength and stability of these shear zones control large scale tectonics and the location of earthquakes. It is widely accepted that rocks undergo a “brittle-to-viscous” transition as depth increases, however the details of how this transition is achieved are a topic of active research.</p><p>To study this transition in polymineralic rocks, we sheared bi-mineralic aggregates with varying ratio (30:70, 50:50 & 70:30 vol%) of quartz (Qtz) and potassium feldspar (Kfs) at temperature, <em>T </em>= 750˚C and pressure, <em>Pc </em>= 800 MPa under either constant displacement rate or constant load boundary conditions. Under constant displacement rate, samples reach high shear stress (τ ≈ 0.4 - 1 GPa, depending on mineral ratio) and then weaken. Under constant load, the strain rate shows low sensitivity to stress below shear stresses of 400 MPa, followed by a high stress sensitivity at higher stresses irrespective of mineral ratio (stress exponent, <em>n</em> = 9 - 13, assuming that<em> strain rate ∝ stress <sup>n</sup>)</em>.</p><p>Strain is localized along "slip zones" in a C and C’ orientation in all experiments irrespective of mineral ratio. These zones delimit larger cataclastic lenses, which develop a weak foliation. Quartz in the lenses shows pervasive Dauphiné twinning that leads to clear CPO patterns in the {r} and {z} rhomb planes. The {r} maxima (and {z} minima) are sub-parallel to the loading direction and rotate synthetically with increasing finite strain suggesting that they track the local σ<sub>1</sub> direction. The material in the slip zones shows extreme grain size reduction, no porosity and flow features. At peak strength, 1-2 vol% of the sample is composed of slip zones that are straight and short. With increasing strain, the slip zones become anastomosing and branching and occupy up to 9 vol%; this development is concomitant with strain-weakening of the sample. The best developed slip zones are observed in samples with high Kfs contents (70 & 50 vol%). We infer that the material in the slip zones is formed of nanocrystalline to partly amorphous material (PAM) that is predominantly derived from Kfs. By compiling literature data on PAM development, we show that the volume of PAM increases with increasing homologous temperature and work done (stress x strain per unit volume) on the sample in rocks containing feldspars.</p><p>Our results suggest that strain localization leads to microstructural transformation of the rocks from a crystalline solid to an amorphous, fluid-like material in the slip zones. This material forms over a broad range of <em>P-T</em>, stress and strain conditions suggesting that it should form readily in nature. The measured rheological response is a combination of viscous flow in the slip zones and cataclastic flow in coarser-grained lenses and can be modeled as a frictional slider coupled in parallel with a viscous dashpot.</p>

2021 ◽  
pp. 039139882199939
Author(s):  
Abdul Hadi Abdul Wahab ◽  
Nor Aqilah Mohamad Azmi ◽  
Mohammed Rafiq Abdul Kadir ◽  
Amir Putra Md Saad

Glenoid conformity is one of the important aspects that could contribute to implant stability. However, the optimal conformity is still being debated among the researchers. Therefore, this study aims to analyze the stress distribution of the implant and cement in three types of conformity (conform, non-conform, and hybrid) in three load conditions (central, anterior, and posterior). Glenoid implant and cement were reconstructed using Solidwork software and a 3D model of scapula bone was done using MIMICS software. Constant load, 750 N, was applied at the central, anterior, and posterior region of the glenoid implant which represents average load for daily living activities for elder people, including, walking with a stick and standing up from a chair. The results showed that, during center load, an implant with dual conformity (hybrid) showed the best (Max Stress—3.93 MPa) and well-distributed stress as compared to other conformity (Non-conform—7.21 MPa, Conform—9.38 MPa). While, during eccentric load (anterior and posterior), high stress was located at the anterior and posterior region with respect to the load applied. Cement stress for non-conform and hybrid implant recorded less than 5 MPa, which indicates it had a very low risk to have cement microcracks, whilst, conform implant was exposed to microcrack of the cement. In conclusion, hybrid conformity showed a promising result that could compromise between conform and non-conform implant. However, further enhancement is required for hybrid implants when dealing with eccentric load (anterior and posterior).


2021 ◽  
Vol 9 (8) ◽  
pp. 839
Author(s):  
Tarek N. Salem ◽  
Nadia M. Elkhawas ◽  
Ahmed M. Elnady

The erosion of limestone and calcarenite ridges that existed parallel to the Mediterranean shoreline forms the calcareous sand (CS) formation at the surface layer of Egypt's northern coast. The CS is often combined with broken shells which are considered geotechnically problematic due to their possible crushability and relatively high compressibility. In this research, CS samples collected from a site along the northern coast of Egypt are studied to better understand its behavior under normal and shear stresses. Reconstituted CS specimens with different ratios of broken shells (BS) are also investigated to study the effect of BS ratios on the soil mixture strength behavior. The strength is evaluated using laboratory direct-shear and one-dimensional compression tests (oedometer test). The CS specimens are not exposed to significant crushability even under relatively high-stress levels. In addition, a 3D finite element analysis (FEA) is presented in this paper to study the degradation offshore pile capacity in CS having different percentages of BS. The stress–strain results using oedometer tests are compared with a numerical model, and it gave identical matching for most cases. The effects of pile diameter and embedment depth parameters are then studied for the case study on the northern coast. Three different mixing ratios of CS and BS have been used, CS + 10% BS, CS + 30% BS, and CS + 50% BS, which resulted in a decrease of the ultimate vertical compression pile load capacity by 8.8%, 15%, and 16%, respectively.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3070
Author(s):  
Fernanda Bessa Ferreira ◽  
Paulo M. Pereira ◽  
Castorina Silva Vieira ◽  
Maria de Lurdes Lopes

Geosynthetic-reinforced soil structures have been used extensively in recent decades due to their significant advantages over more conventional earth retaining structures, including the cost-effectiveness, reduced construction time, and possibility of using locally-available lower quality soils and/or waste materials, such as recycled construction and demolition (C&D) wastes. The time-dependent shear behaviour at the interfaces between the geosynthetic and the backfill is an important factor affecting the overall long-term performance of such structures, and thereby should be properly understood. In this study, an innovative multistage direct shear test procedure is introduced to characterise the time-dependent response of the interface between a high-strength geotextile and a recycled C&D material. After a prescribed shear displacement is reached, the shear box is kept stationary for a specific period of time, after which the test proceeds again, at a constant displacement rate, until the peak and large-displacement shear strengths are mobilised. The shear stress-shear displacement curves from the proposed multistage tests exhibited a progressive decrease in shear stress with time (stress relaxation) during the period in which the shear box was restrained from any movement, which was more pronounced under lower normal stress values. Regardless of the prior interface shear displacement and duration of the stress relaxation stage, the peak and residual shear strength parameters of the C&D material-geotextile interface remained similar to those obtained from the conventional (benchmark) tests carried out under constant displacement rate.


1987 ◽  
Vol 109 (3) ◽  
pp. 444-450 ◽  
Author(s):  
L. Houpert ◽  
E. Ioannides ◽  
J. C. Kuypers ◽  
J. Tripp

A recently proposed fatigue life model for rolling bearings has been applied to the study of lifetime reduction under conditions conducive to microspalling. The presence of a spike in the EHD pressure distribution produces large shear stresses localized very close to the surface which may account for early failure. This paper describes a parametric study of the effect of such spikes. Accurate stress fields in the volume are calculated for simulated pressure spikes of different height, width and position relative to a Hertzian pressure distribution, as well as for different lubricant traction coefficients and film thicknesses. Despite the high stress concentrations in the surface layers, reductions in life predicted by the model are modest. Typically, the pressure spike may halve the life, with the implication that subsurface fatigue still dominates. In corroboration of this prediction, preliminary experimental work designed to reproduce microspalling conditions shows that microindents due to overrolling particles are a much more common form of surface damage than microspalling.


2013 ◽  
Vol 470 ◽  
pp. 244-249
Author(s):  
Chang Dong Liu ◽  
Yi Du Zhang

Based on Simufact11.0, a 3-D model of T profile extrusion is established and the extrusion process of TC4 is investigated using finite volumemethod(FVM) of Euler mesh description. Effects of different friction coefficients on the effective stress, extrusion pressure, effective strain and effective strain rate have been studied. The study shows that there is a high-stress zone at a certain distance from the entrance of the forming area and a high strain rate zone around that area. With the increase of friction coefficient, the value of the stress increased and the deformation is more uneven. The track of extrusion pressure shows that extrusion increase with the increase of friction coefficient.


Sign in / Sign up

Export Citation Format

Share Document