The impact of storage conditions on heat losses of HT-ATES systems

Author(s):  
Stijn Beernink ◽  
Martin Bloemendal ◽  
Niels Hartog

<p>Heating and cooling is responsible for about 50% of the European total energy use. Therefore, renewable sources of heat are needed to reduce GHG emissions (e.g. solar, geothermal, waste-heat). Due to a temporal and spatial mismatch between availability and demand of heat, large scale heat storage facilities are needed. High Temperature Aquifer Thermal Energy Storage (HT-ATES) systems are one of the cheapest and most adequate ways to store large amounts of sensible heat. Regular/Low-T ATES systems are considered a proven technology with currently more than 3 000 systems operable world-wide. However, at higher storage temperatures (e.g. 40-100 °C) temperature dependent water properties (density, viscosity) more strongly affect physical processes, resulting in higher and unpredictable heat losses. While first applications and research on this subject started more than 50 years ago, many uncertainties still remain. In this research we study the (hydrogeological) storage conditions that affect the heat losses of HT-ATES systems. Numerical simulations of a wide range of storage conditions, are done to obtain generic insights in the performance of HT-ATES systems. These insights allow to identify which heat transport processes dominate in contribution to heat losses. Results show that conduction always contributes to heat losses for HT-ATES systems and relate to geometric storage conditions. While buoyancy flow (free convection) may also contribute considerable to heat losses under specific conditions.</p>

2019 ◽  
Author(s):  
Chris R. Flechard ◽  
Andreas Ibrom ◽  
Ute M. Skiba ◽  
Wim de Vries ◽  
Marcel van Oijen ◽  
...  

Abstract. The impact of atmospheric reactive nitrogen (Nr) deposition on carbon (C) sequestration in soils and biomass of unfertilised, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC / dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of Nr deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2019) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet Nr deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and Nr inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes, soil NO3− leaching sampling, as well as results of soil incubation experiments for N and greenhouse gas (GHG) emissions, surveys of available data from online databases and from the literature, together with forest ecosystem (BASFOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from −70 to 826 g (C) m−2 yr−1 at total wet + dry inorganic Nr deposition rates (Ndep) of 0.3 to 4.3 g (N) m−2 yr−1; and from −4 to 361 g (C) m−2 yr−1 at Ndep rates of 0.1 to 3.1 g (N) m−2 yr−1 in short semi-natural vegetation (moorlands, wetlands and unfertilised extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Nitrogen losses in the form of NO, N2O and especially NO3− were of the order of 10–20 % of Ndep at sites with Ndep  3 g (N) m−2 yr−1, indicating that perhaps one third of the sites were in a state of early to advanced N saturation. Net ecosystem productivity increased with Nr deposition up to 2–2.5 g (N) m−2 yr−1, with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP / GPP ratio). At elevated Ndep levels (> 2.5 g (N) m−2 yr−1), where inorganic Nr losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate Ndep levels was partly the result of geographical cross-correlations between Ndep and climate, indicating that the actual mean dC / dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. Ndep.


2021 ◽  
Author(s):  
Pierre-Olivier Vandanjon ◽  
Alex Coiret ◽  
Emir Deljanin

Energy consumed by road vehicles has a high impact on climate changes; indeed this energy use accounts for 23% of total energy-related Green House Gases (GHG) emissions of 2014 global GHG emissions. GHG emissions are growing constantly year after year, in spite of global objectives (COP) and researches on vehicle efficiency and modal shift. The contribution of the infrastructure to lower this energy is less studied, since it is often seen as immuable or too costly. This paper aims to demonstrate that simple and low-cost solutions exist for that purpose. Particularly a methodology has been developed, based on an optimization of the speed layout over an itinerary in order to improve the eco- driving potential of a given road infrastructure. The key point of this work is that inconsistency often exists between vehicle dynamics, road longitudinal profile and changes in regulation speeds. These changes in speed are defining the speed- sectioning of a route, and an optimization of this speed-sectioning can be easily carried out while displacing or modifying speed signs. The objective of this study is to build an optimized speed sectioning which minimizes the fuel consumption for realistic traffic and various driver behaviors, while maintaining the required safety levels. A progressive optimization loop has been worked out with a Python script including an embedded microscopic road traffic simulator. As a result, an optimized speed-sectioning is leading to a gain of 227 ml for 60 minutes of simulated flow of 100 veh/h/lane, for a modification of a single speed changing point. The overall benefits are reduced energy consumption, air pollution and noise which otherwise would have been produced by braking. This work brings an effective optimization tool for road managers and its practical application is passive and inexpensive. This methodology is suitable for rural and urbanized territories and easily adaptable to any type of traffic in various countries. In perspectives, the optimization process could be extended to a full road route and to a wide range of different speed-sectioning layouts.


Oceanography ◽  
2021 ◽  
Vol 34 (1) ◽  
pp. 58-75
Author(s):  
Michel Boufadel ◽  
◽  
Annalisa Bracco ◽  
Eric Chassignet ◽  
Shuyi Chen ◽  
...  

Physical transport processes such as the circulation and mixing of waters largely determine the spatial distribution of materials in the ocean. They also establish the physical environment within which biogeochemical and other processes transform materials, including naturally occurring nutrients and human-made contaminants that may sustain or harm the region’s living resources. Thus, understanding and modeling the transport and distribution of materials provides a crucial substrate for determining the effects of biological, geological, and chemical processes. The wide range of scales in which these physical processes operate includes microscale droplets and bubbles; small-scale turbulence in buoyant plumes and the near-surface “mixed” layer; submesoscale fronts, convergent and divergent flows, and small eddies; larger mesoscale quasi-geostrophic eddies; and the overall large-scale circulation of the Gulf of Mexico and its interaction with the Atlantic Ocean and the Caribbean Sea; along with air-sea interaction on longer timescales. The circulation and mixing processes that operate near the Gulf of Mexico coasts, where most human activities occur, are strongly affected by wind- and river-induced currents and are further modified by the area’s complex topography. Gulf of Mexico physical processes are also characterized by strong linkages between coastal/shelf and deeper offshore waters that determine connectivity to the basin’s interior. This physical connectivity influences the transport of materials among different coastal areas within the Gulf of Mexico and can extend to adjacent basins. Major advances enabled by the Gulf of Mexico Research Initiative in the observation, understanding, and modeling of all of these aspects of the Gulf’s physical environment are summarized in this article, and key priorities for future work are also identified.


2019 ◽  
Vol 56 (1) ◽  
pp. 261-270
Author(s):  
Maria Stoicanescu ◽  
Aurel Crisan ◽  
Ioan Milosan ◽  
Mihai Alin Pop ◽  
Jose Rodriguez Garcia ◽  
...  

This paper presents and discusses research conducted with the purpose of developing the use of solar energy in the heat treatment of steels. For this, a vertical axis solar furnace called at Plataforma Solar de Almeria was adapted such as to allow control of the heating and cooling processes of samples made from 1.1730 steel. Thus temperature variation in pre-set points of the heated samples could be monitored in correlation with the working parameters: the level of solar radiation and implicitly the energy used the conditions of sample exposed to solar radiation, and the various protections and cooling mediums.The recorded data allowed establishing the types of treatments applied for certain working conditions. The distribution of hardness, as the representative feature resulting from heat treatment, was analysed on all sides of the treated samples. In correlation with the time-temperature-transformation diagram of 1.1730 steel, the measured values confirmed the possibility of using solar energy in all types of heat treatment applied to this steel. In parallel the efficiency of using solar energy was analysed in comparison to the energy obtained by burning methane gas for the heat treatment for the same set of samples. The analysis considered energy consumption, productivity and the impact on the environment. Thanks to various data obtained through developed experiences, which cover a wide range of thermic treatments applied steels 1.1730 model, we can certainly state that this can be a solid base in using solar energy in applications of thermic treatment at a high industrial level.


2021 ◽  
Author(s):  
Theresa A Harbig ◽  
Sabrina Nusrat ◽  
Tali Mazor ◽  
Qianwen Wang ◽  
Alexander Thomson ◽  
...  

Molecular profiling of patient tumors and liquid biopsies over time with next-generation sequencing technologies and new immuno-profile assays are becoming part of standard research and clinical practice. With the wealth of new longitudinal data, there is a critical need for visualizations for cancer researchers to explore and interpret temporal patterns not just in a single patient but across cohorts. To address this need we developed OncoThreads, a tool for the visualization of longitudinal clinical and cancer genomics and other molecular data in patient cohorts. The tool visualizes patient cohorts as temporal heatmaps and Sankey diagrams that support the interactive exploration and ranking of a wide range of clinical and molecular features. This allows analysts to discover temporal patterns in longitudinal data, such as the impact of mutations on response to a treatment, e.g. emergence of resistant clones. We demonstrate the functionality of OncoThreads using a cohort of 23 glioma patients sampled at 2-4 timepoints. OncoThreads is freely available at http://oncothreads.gehlenborglab.org and implemented in Javascript using the cBioPortal web API as a backend.


2021 ◽  
Author(s):  
Taha Sezer ◽  
Abubakar Kawuwa Sani ◽  
Rao Martand Singh ◽  
David P. Boon

<p>Groundwater heat pumps (GWHP) are an environmentally friendly and highly efficient low carbon heating technology that can benefit from low-temperature groundwater sources lying in the shallow depths to provide heating and cooling to buildings. However, the utilisation of groundwater for heating and cooling, especially in large scale (district level), can create a thermal plume around injection wells. If a plume reaches the production well this may result in a decrease in the system performance or even failure in the long-term operation. This research aims to investigate the impact of GWHP usage in district-level heating by using a numerical approach and considering a GWHP system being constructed in Colchester, UK as a case study, which will be the largest GWHP system in the UK. Transient 3D simulations have been performed pre-construction to investigate the long-term effect of injecting water at 5°C, into a chalk bedrock aquifer. Modelling suggests a thermal plume develops but does not reach the production wells after 10 years of operation. The model result can be attributed to the low hydraulic gradient, assumed lack of interconnecting fractures, and large (>500m) spacing between the production and injection wells. Model validation may be possible after a period operational monitoring.</p>


Author(s):  
D.V. Budianskyi

The characteristic features of I. Kavaleridze’s drama is considered in the article. It is noted that there are signs of the artist’s individuality, attraction to expressionist forms, artistic techniques characteristic for the art of sculpture: symbolism, monumentality, hyperbole. I. Kavaleridze was well versed in the drama laws, understood the specifics of the stage events construction, had a large arsenal of literary means, thanks to which the characters’ monologues and dialogues were extremely expressive and colorful. In his work, he implemented original solutions that were ahead of time. Therefore, many of the artist’s ideas and achievements received due recognition only after his death. I. Kavaleridze’s creative heritage covers a wide range of both purely artistic and general philosophical problems. Among them the formation of the era of modernism and its features in the Ukrainian art of the early XX century, the impact of revolutionary ideas on the work of the 1920s, the role of spiritual leaders of the Ukrainian people T. Shevchenko and G. Skovoroda in the formation of national consciousness, political and ideological pressure on figurative art language and the formation of a socialist-realist canon, etc. The analysis of the productions of I. Kavalerizde’s plays “The First Furrow” and “Gregory and Paraskeva” on the stage of the Mykhailo Shchepkin Sumy Theater of Drama and Musical Comedy in 1970-1972. The article notes that these plays were staged in Sumy for the first time in the history of Ukrainian theater. The premiere of “The First Furrow” (the play was called “Old Men”) took place on March 19, 1970. The figure of the national genius Hryhoriy Skov oroda was als o embodied for the first time on t he stage in Sumy in th e play “Hryhoriy and Paraskeva”. It premiered on October 21, 1972. I. Rybchynsky, Honored Artist of the USSR, performed the production. Creating generalized historical outlines of people’s life, features of life at that time, depicting psychological portraits of people in various, sometimes-dramatic collisions, in the productions of I. Kavaleridze’s plays on the Sumy stage the emphasis was on universal values such as virtue, love. The main character was the Ukrainian people, who nurtured such large-scale historical figures, gave them strength and wisdom for great achievements. Based on publications in periodicals of that time, memoirs of Ukrainian directors, the peculiarities of the director’s interpretation, stenographic and musical design of these plays on the Sumy stage are considered. Considerable attention is paid to the analysis of acting works in I. Kavaleridze’s plays. In particular, the peculiarities of the actor’s embodiment of the image of the national genius Hryhoriy Skovoroda on the stage are presented. It is noted that I. Kavaleridze’s plays, created in a difficult political, social and ideological context, are rightly considered to be highly artistic works of Ukrainian drama. Their staging was carried out on various theatrical stages, including Mykhailo Shchepkin Sumy Theater of Drama and Musical Comedy is an important page of national theatrical art.


2020 ◽  
Vol 12 (16) ◽  
pp. 6563
Author(s):  
Roque G Stagnitta ◽  
Matteo V Rocco ◽  
Emanuela Colombo

Energy balances have been historically conceived based on a supply-side perspective, providing neither detailed information about energy conversion into useful services nor the effects that may be induced by the application of policies in other sectors to energy consumption. This article proposes an approach to a thorough assessment of the impact of efficiency policies on final energy uses, focusing on residential space heating and cooling, and capable of: (1) quantifying final useful services provided and (2) accounting for the global impact of efficiency policies on final energy use, taking advantage of Input–Output analysis. This approach is applied in five cities of Argentina. Firstly, the quantity of energy service provided (i.e., level of thermal comfort) for each city is evaluated and compared with the defined target. It is found out that heating comfort is guaranteed approximately as established, whereas in the cooling case the provision is twice the established level. Secondly, primary energy consumption of heating and cooling services is evaluated before and after different efficiency improvement policies. The results show that the major primary energy saving (52%) is obtained from the upgrading appliances scenario and reflect the importance of accounting for embodied energy in goods and services involved in interventions.


2019 ◽  
Vol 116 (25) ◽  
pp. 12261-12269 ◽  
Author(s):  
William Nordhaus

Concerns about the impact on large-scale earth systems have taken center stage in the scientific and economic analysis of climate change. The present study analyzes the economic impact of a potential disintegration of the Greenland ice sheet (GIS). The study introduces an approach that combines long-run economic growth models, climate models, and reduced-form GIS models. The study demonstrates that social cost–benefit analysis and damage-limiting strategies can be usefully extended to illuminate issues with major long-term consequences, as well as concerns such as potential tipping points, irreversibility, and hysteresis. A key finding is that, under a wide range of assumptions, the risk of GIS disintegration makes a small contribution to the optimal stringency of current policy or to the overall social cost of climate change. It finds that the cost of GIS disintegration adds less than 5% to the social cost of carbon (SCC) under alternative discount rates and estimates of the GIS dynamics.


2020 ◽  
Vol 12 (19) ◽  
pp. 3207
Author(s):  
Ioannis Papoutsis ◽  
Charalampos Kontoes ◽  
Stavroula Alatza ◽  
Alexis Apostolakis ◽  
Constantinos Loupasakis

Advances in synthetic aperture radar (SAR) interferometry have enabled the seamless monitoring of the Earth’s crust deformation. The dense archive of the Sentinel-1 Copernicus mission provides unprecedented spatial and temporal coverage; however, time-series analysis of such big data volumes requires high computational efficiency. We present a parallelized-PSI (P-PSI), a novel, parallelized, and end-to-end processing chain for the fully automated assessment of line-of-sight ground velocities through persistent scatterer interferometry (PSI), tailored to scale to the vast multitemporal archive of Sentinel-1 data. P-PSI is designed to transparently access different and complementary Sentinel-1 repositories, and download the appropriate datasets for PSI. To make it efficient for large-scale applications, we re-engineered and parallelized interferogram creation and multitemporal interferometric processing, and introduced distributed implementations to best use computing cores and provide resourceful storage management. We propose a new algorithm to further enhance the processing efficiency, which establishes a non-uniform patch grid considering land use, based on the expected number of persistent scatterers. P-PSI achieves an overall speed-up by a factor of five for a full Sentinel-1 frame for processing in a 20-core server. The processing chain is tested on a large-scale project to calculate and monitor deformation patterns over the entire extent of the Greek territory—our own Interferometric SAR (InSAR) Greece project. Time-series InSAR analysis was performed on volumes of about 12 TB input data corresponding to more than 760 Single Look Complex Sentinel-1A and B images mostly covering mainland Greece in the period of 2015–2019. InSAR Greece provides detailed ground motion information on more than 12 million distinct locations, providing completely new insights into the impact of geophysical and anthropogenic activities at this geographic scale. This new information is critical to enhancing our understanding of the underlying mechanisms, providing valuable input into risk assessment models. We showcase this through the identification of various characteristic geohazard locations in Greece and discuss their criticality. The selected geohazard locations, among a thousand, cover a wide range of catastrophic events including landslides, land subsidence, and structural failures of various scales, ranging from a few hundredths of square meters up to the basin scale. The study enriches the large catalog of geophysical related phenomena maintained by the GeObservatory portal of the Center of Earth Observation Research and Satellite Remote Sensing BEYOND of the National Observatory of Athens for the opening of new knowledge to the wider scientific community.


Sign in / Sign up

Export Citation Format

Share Document