The effect of magma poor and magma rich rifted margins on continental collision dynamics

Author(s):  
Valeria Turino ◽  
Valentina Magni ◽  
Hans Jørgen Kjøll ◽  
Johannes Jakob

<p>The transition between continental and oceanic lithosphere in rifted margins can display a wide range of characteristics, which primarily depend on the regional tectonic evolution. Rifted margins form when continents rift apart and are commonly characterized by a thinned transition zone between the continental crust and the oceanic crust. The velocity and duration of the rifting process influence the dimensions and geometry of the passive margin. Rifted (or passive) margins are often subdivided in a magma-rich type and a magma-poor type, where the magma-rich are characterized by large input of mafic melt, derived from the mantle, into the crust. Magma-poor rifted margins on the other hand are characterized by much less magma production during the rifting process. This causes high variability in the geometry and rheology of passive margins.</p><p>The aim of this work is to understand how different types of passive margins can influence the dynamics of continental collision. We modelled subduction using the finite element code Citcom and to describe the dynamics of continental collision we mainly focused on the time and position of the slab break-off after the collision and on the fate of the passive margin material.</p><p>We compared these models as a function of various parameters (e.g., margin length, density, and viscosity), in order to understand how the architecture of a passive margin affects the dynamics of continental collision. We find that passive margins have a noticeable impact on subduction, as we observe a large variability in slab break-off times (about 10–70 Myr after continental collision) and depth (about 200–450 km). Furthermore, the factor that shows the largest impact on subduction dynamics is the rheology of the passive margin. Our results show that for both magma-poor and magma-rich margins, part of the margin does not subduct but, instead, exhumes and accretes to the overriding plate. Importantly, the amount of accreted material to the overriding plate is much larger when the passive margin is magma-poor compared to the magma-rich case. This is consistent with geological observations that fossil magma-poor passive margins are preserved in many mountain ranges, such as the Alps and the Scandinavian Caledonides, whereas remnants of magma-rich rifted margins are scarce. Because, in our models, the slab break-off occurs inboard of the LCB, magma-rich rifted margin may only be preserved when the density of the LCB is similar to that of the rest of the continental plate. Therefore magma-rich rifted margins are prone to be subducted and recycled into the mantle. Importantly, our results show that rifted margin type controls the architecture of the subsequent collisional phase of the Wilson cycle.</p>

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gang Lu ◽  
Ritske S. Huismans

AbstractBreakup volcanism along rifted passive margins is highly variable in time and space. The factors controlling magmatic activity during continental rifting and breakup are not resolved and controversial. Here we use numerical models to investigate melt generation at rifted margins with contrasting rifting styles corresponding to those observed in natural systems. Our results demonstrate a surprising correlation of enhanced magmatism with margin width. This relationship is explained by depth-dependent extension, during which the lithospheric mantle ruptures earlier than the crust, and is confirmed by a semi-analytical prediction of melt volume over margin width. The results presented here show that the effect of increased mantle temperature at wide volcanic margins is likely over-estimated, and demonstrate that the large volumes of magmatism at volcanic rifted margin can be explained by depth-dependent extension and very moderate excess mantle potential temperature in the order of 50–80 °C, significantly smaller than previously suggested.


Solid Earth ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 139-158 ◽  
Author(s):  
Ershad Gholamrezaie ◽  
Magdalena Scheck-Wenderoth ◽  
Judith Sippel ◽  
Manfred R. Strecker

Abstract. The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature–depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere–asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.


Passive margins form by continental splitting which may follow an early pre-split graben stage of development. Such margins are divisible into rifted and sheared types. After formation the margins develop by predominantly vertical tectonics as the intervening ocean widens by seafloor spreading. The plate splitting mechanism is not yet understood, but evidence from aseismic ridges and associated continental volcanism is relevant. Location of the original continent-ocean contact is also problematical in many regions, especially where quiet magnetic zones occur above crust of uncertain status. Rifted margins are notable for great subsidence resulting from early graben formation and later flexural subsidence of the shelf and slope regions. Graben formation is attributed to wedge subsidence of the upper crust in response to crustal stretching, possibly associated with doming before splitting. Four factors have been recognized as contributing to flexural subsidence: gravity loading, thermal subsidence of the adjacent oceanic lithosphere, possible thermal subsidence of the continental lithosphere following heating and erosion at the time of break-up, and thinning of the continental crust by seaward creep of lower crustal material. The relative importance of these four mechanisms needs clarification.


2020 ◽  
Author(s):  
Jie Yuan ◽  
Zhenyu Yang ◽  
Chenglong Deng ◽  
Wout Krijgsman ◽  
Xiumian Hu ◽  
...  

Abstract The India-Asia collision is an outstanding smoking gun in the study of continental collision dynamics. How and when the continental collision occurred remains a long-standing controversy. Here we present two new paleomagnetic data sets from rocks deposited on the distal part of the Indian passive margin, which indicate that the Tethyan Himalaya terrane was situated at a paleolatitude of ∼19.4°S at ∼75 Ma and moved rapidly northward to reach a paleolatitude of ∼13.7°N at ∼61 Ma. This implies that the Tethyan Himalaya terrane rifted from India after ∼75 Ma, generating the North India Sea. We document a new two-stage continental collision, first at ∼61 Ma between the Lhasa and Tethyan Himalaya terranes, and subsequently at ∼53−48 Ma between the Tethyan Himalaya terrane and India, diachronously closing the North India Sea from west to east. Our scenario matches the history of India-Asia convergence rates and reconciles multiple lines of geologic evidence for the collision.


2021 ◽  
Vol 9 ◽  
Author(s):  
A. Auzemery ◽  
E. Willingshofer ◽  
P. Yamato ◽  
T. Duretz ◽  
F. Beekman

We perform numerical modelling to simulate the shortening of an oceanic basin and the adjacent continental margins in order to discuss the relationship between compressional stresses acting on the lithosphere and the time dependent strength of the mid-oceanic ridges within the frame of subduction initiation. We focus on the role of stress regulating mechanisms by testing the stress–strain-rate response to convergence rate, and the thermo-tectonic age of oceanic and continental lithospheres. We find that, upon compression, subduction initiation at passive margin is favoured for thermally thin (Palaeozoic or younger) continental lithospheres (<160 km) over cratons (>180 km), and for oceanic basins younger than 60 Myr (after rifting). The results also highlight the importance of convergence rate that controls stress distribution and magnitudes in the oceanic lithosphere. Slow convergence (<0.9 cm/yr) favours strengthening of the ridge and build-up of stress at the ocean-continent transition allowing for subduction initiation at passive margins over subduction at mid-oceanic ridges. The results allow for identifying geodynamic processes that fit conditions for subduction nucleation at passive margins, which is relevant for the unique case of the Alps. We speculate that the slow Africa–Europe convergence between 130 and 85 Ma contributes to the strengthening of the mid-oceanic ridge, leading to subduction initiation at passive margin 60–70 Myr after rifting and passive margin formation.


2012 ◽  
Vol 58 (12) ◽  
pp. 1703-1710 ◽  
Author(s):  
Yeo-Min Yun ◽  
Julianne Cook Botelho ◽  
Donald W Chandler ◽  
Alex Katayev ◽  
William L Roberts ◽  
...  

BACKGROUND Testosterone measurements that are accurate, reliable, and comparable across methodologies are crucial to improving public health. Current US Food and Drug Administration–cleared testosterone assays have important limitations. We sought to develop assay performance requirements on the basis of biological variation that allow physiologic changes to be distinguished from assay analytical errors. METHODS From literature review, the technical advisory subcommittee of the Partnership for the Accurate Testing of Hormones compiled a database of articles regarding analytical and biological variability of testosterone. These data, mostly from direct immunoassay-based methodologies, were used to specify analytical performance goals derived from within- and between-person variability of testosterone. RESULTS The allowable limits of desirable imprecision and bias on the basis of currently available biological variation data were 5.3% and 6.4%, respectively. The total error goal was 16.7%. From recent College of American Pathologists proficiency survey data, most currently available testosterone assays missed these analytical performance goals by wide margins. Data from the recently established CDC Hormone Standardization program showed that although the overall mean bias of selected certified assays was within 6.4%, individual sample measurements could show large variability in terms of precision, bias, and total error. CONCLUSIONS Because accurate measurement of testosterone across a wide range of concentrations [approximately 2–2000 ng/dL (0.069–69.4 nmol/L)] is important, we recommend using available data on biological variation to calculate performance criteria across the full range of expected values. Additional studies should be conducted to obtain biological variation data on testosterone from women and children, and revisions should be made to the analytical goals for these patient populations.


Elements ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Elisabetta Rampone ◽  
Alessio Sanfilippo

The Alpine–Apennine ophiolites are lithospheric remnants of the Jurassic Alpine Tethys Ocean. They predominantly consist of exhumed mantle peridotites with lesser gabbroic and basaltic crust and are locally associated with continental crustal material, indicating formation in an environment transitional from an ultra-slow-spreading seafloor to a hyperextended passive margin. These ophiolites represent a unique window into mantle dynamics and crustal accretion in an ultra-slow-spreading extensional environment. Old, pre-Alpine, lithosphere is locally preserved within the mantle sequences: these have been largely modified by reaction with migrating asthenospheric melts. These reactions were active in both the mantle and the crust and have played a key role in creating the heterogeneous oceanic lithosphere in this branch of the Mesozoic Western Tethys.


2021 ◽  
Author(s):  
Banafsheh Vahdati ◽  
Seyed Ahmad Mazaheri

<p>Mashhad granitoid complex is part of the northern slope of the Binalood Structural Zone (BSZ), Northeast of Iran, which is composed of granitoids and metamorphic rocks. This research presents new petrological and geochemical whole-rock major and trace elements analyses in order to determine the origin of granitoid rocks from Mashhad area. Field and petrographic observations indicate that these granitoid rocks have a wide range of lithological compositions and they are categorized into intermediate to felsic intrusive rocks (SiO<sub>2</sub>: 57.62-74.39 Wt.%). Qartzdiorite, tonalite, granodiorite and monzogranite are common granitoids with intrusive pegmatite and aplitic dikes and veins intruding them. Based on geochemical analyses, the granitoid rocks are calc-alkaline in nature and they are mostly peraluminous. On geochemical variation diagrams (major and minor oxides versus silica) Na<sub>2</sub>O and K<sub>2</sub>O show a positive correlation with silica while Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, CaO, Fe<sub>2</sub>O<sub>3</sub>, and MgO show a negative trend. Therefore fractional crystallization played a considerable role in the evolution of Mashhad granitoids. Based on the spider diagrams, there are enrichments in LILE and depletion in HFSE. Low degrees of melting or crustal contamination may be responsible for LILE enrichment. Elements such as Pb, Sm, Dy and Rb are enriched, while Ba, Sr, Nd, Zr, P, Ti and Yb (in monzogranites) are all depleted. LREE enrichment and HREE depletion are observed in all samples on the Chondrite-normalized REE diagram. Similar trends may be evidence for the granitoids to have the same origin. Besides, LREE enrichment relative to HREE in some samples can indicate the presence of garnet in their source rock. Negative anomalies of Eu and Yb are observed in monzogranites. Our results show that Mashhad granitoid rocks are orogenic related and tectonic discrimination diagrams mostly indicate its syn-to-post collisional tectonic setting. No negative Nb anomaly compared with MORB seems to be an indication of non-subduction zone related magma formation. According to the theory of thrust tectonics of the Binalood region, the oceanic lithosphere of the Palo-Tethys has subducted under the Turan microplate. Since the Mashhad granitoid outcrops are settled on the Iranian plate, this is far from common belief that these granitoid rocks are related to the subduction zones and the continental arcs. The western Mashhad granitoids show more mafic characteristics and are possibly crystallized from a magma with sedimentary and igneous origin. Thus, Western granitoid outcrops in Mashhad are probably hybrid type and other granitoid rocks, S and SE Mashhad are S-type. Evidences suggest that these continental collision granitoid rocks are associated with the late stages of the collision between the Iranian and the Turan microplates during the Paleo-Tethys Ocean closure which occurred in the Late Triassic.</p>


2020 ◽  
Author(s):  
Antonio Manjón-Cabeza Córdoba ◽  
Maxim Ballmer

Abstract. The origin of intraplate volcanism is not explained by the plate tectonic theory, and several models have been put forward for explanation. One of these models involves Edge-Driven Convection (EDC), in which cold and thick continental lithosphere is juxtaposed to warm and thin oceanic lithosphere to trigger convective instability. To test whether EDC can produce long-lived high-volume magmatism, we run numerical models of EDC for a wide range of mantle properties and edge (i.e., the oceanic-continental transition) geometries. We find that the most important parameters that govern EDC are the rheological paramaters mantle viscosity η0 and activation energy Ea. However, even the maximum melting volumes found in our models are insufficient to account for island-building volcanism on old seafloor, such as at the Canary Islands and Cape Verde. Also, beneath old seafloor, localized EDC-related melting commonly transitions into widespread melting due to small-scale sublithospheric convection, inconsistent with the distribution of volcanism at these volcanic chains. In turn, EDC is a good candidate to sustain the formation of small seamounts on young seafloor, as it is a highly transient phenomenon that occurs in all our models soon after initiation. In a companion paper, we investigate the implications of interaction of EDC with mantle-plume activity.


2018 ◽  
Vol 36 (3) ◽  
pp. 1 ◽  
Author(s):  
Luizemara Soares Alves Szameitat ◽  
Francisco José Fonseca Ferreira ◽  
Gianreto Manatschal ◽  
Monica da Costa Pereira Lavalle Helbron

ABSTRACT. Inheritance on continental lithosphere is considered as an important aspect on passive margins, since they may control magmatic budget and strain evolution during rifting and lithospheric breakup. On the distal Western Iberian margin, the transition to a steady state oceanic crust was little sampled and less investigated, in comparison to the more proximal parts near to the continental edge. In this work, we use marine magnetic data to analyze some aspects of the transition between the zone of exhumed continental mantle (ZECM) and the unequivocal oceanic crust, using transformed magnetic data. We observe that the end of the ZECM presents some straight magnetic features, especially at the eastern limit of the J anomaly. These magnetic lineaments are consistent with Early Cretaceous flow lines of the Iberian Plate. Straight structures are not expected in a newly formed oceanic lithosphere. Instead, it seems to be controlled by mantle inheritance. These straight magnetic features may indicate basement inheritance controlling magmatic insertions at the beginning of the oceanic crust formation.Keywords: Iberia, Magnetometry, Ocean-Continent Transition, Inherited Structures, Magma-Poor Margin. RESUMO. Estruturas herdadas na litosfera continental são um aspecto importante em margens passivas, pois poderão condicionar a entrada de magma e a evolução da deformação durante o rifteamento e quebra litosférica. Na porção distal da Margem Ibérica Ocidental, a transição da crosta continental até a crosta oceânica bem estabelecida possui menos dados e é menos investigada em comparação com a porção junto do limite de crosta continental. Neste trabalho, usamos dados magnéticos marinhos para analisar alguns aspectos entre a zona de exumação mantélica e a crosta oceânica inequívoca, através de dados magnéticos transformados. Observa-se que o final da zona de exumação mantélica apresenta algumas feições retilíneas, especialmente no limite leste da Anomalia J. Estes lineamentos magnéticos estão em conformidade com linhas de fluxo mesozoicas da Placa Ibérica. Feições retilíneas não são esperadas em uma litosfera oceânica neoformada. Ao contrário, estas aparentam ser um controle dado por estruturas pretéritas do manto. Portanto, estas feições magnéticas retilíneas sugerem uma herança do embasamento continental controlando as intrusões magmáticas no início da formação da crosta oceânica.Palavras-chave: Ibéria, Magnetometria, Transição Continente-Oceano, Estruturas Herdadas, Margem Pobre em Magma. 


Sign in / Sign up

Export Citation Format

Share Document