An application of field-based photogrammetry as a virtual outcrop building target: a key example from Santorini’s northern caldera wall, Greece

Author(s):  
Fabio Luca Bonali ◽  
Luca Fallati ◽  
Varvara Antoniou ◽  
Kyriaki Drymoni ◽  
Federico Pasquaré Mariotto ◽  
...  

<p>The application of photogrammetry to volcanic areas is usually made using UAVs for collecting pictures aimed at producing high-resolution orthomosaic and digital surface models. In the present work, instead, we use a boat-camera-based photogrammetry approach, as a tool for orthomosaic, digital surface modelling and virtual outcrop production at an almost vertical 300-m-high geological feature: the northern caldera wall of Santorini. This is a geological structure of great interest, where many tens of dykes crop out within a heterogeneous host rock made of sequences of effusive and explosive volcanic deposits. Some active and inactive faults also dissect the caldera wall. Thus, the study area is almost inaccessible for classic field surveys due to challenging logistic conditions and landslide hazard.</p><p>We used a 20 MPX camera run by an operator who collected a total of 887 pictures almost continuously, orthogonal to the ground and opposite to the target, during a 5.5-km-long boat survey. We performed the study along the northern caldera wall, at a constant boat velocity and at a distance from the coast/caldera wall that varied between 35.8 m and 296.5 m. The outcomes of the photogrammetry application include: 1) a high-resolution 3D model of the study area, 2) a high-resolution virtual outcrop for two selected parts of the caldera, 3) qualitative and quantitative structural data (dyke attitude, thickness, cross-cutting relationships, host rock lithology) along the vertical caldera cliff. Our method represents a new approach for 3D outcrop building for research under extreme logistic conditions.</p>

Author(s):  
H. Arefi ◽  
H. Hashemi ◽  
Th. Krauss ◽  
M. Gharibia

In recent years, the acquisition and processing techniques of high resolution Digital Surface Models (DSM) have been rapidly improved. Airborne LiDAR production as a well-known and high quality DSM is still unbeatable in elevation accuracy and highly produced dense point clouds. In this paper, the objective is to update an old but high quality DSM produced by LiDAR data using a DSM generated from high resolution stereo satellite images. A classification-base algorithm is proposed to extract building changes between DSMs in two epochs. For image classification procedure, the DSM and Worldview-2 orthorectified images have been used as input data for a fuzzy-based classification method. Then, extracted buildings are classified into unchanged, destroyed, new, and changed classes. In this study a dataset related to Munich city, has been utilized to test the experimental investigation. The implemented qualitative and quantitative assessments demonstrate high quality as well as high feasibility of the proposed approach.


Author(s):  
K. H. Downing ◽  
S. G. Wolf ◽  
E. Nogales

Microtubules are involved in a host of critical cell activities, many of which involve transport of organelles through the cell. Different sets of microtubules appear to form during the cell cycle for different functions. Knowledge of the structure of tubulin will be necessary in order to understand the various functional mechanisms of microtubule assemble, disassembly, and interaction with other molecules, but tubulin has so far resisted crystallization for x-ray diffraction studies. Fortuitously, in the presence of zinc ions, tubulin also forms two-dimensional, crystalline sheets that are ideally suited for study by electron microscopy. We have refined procedures for forming the sheets and preparing them for EM, and have been able to obtain high-resolution structural data that sheds light on the formation and stabilization of microtubules, and even the interaction with a therapeutic drug.Tubulin sheets had been extensively studied in negative stain, demonstrating that the same protofilament structure was formed in the sheets and microtubules. For high resolution studies, we have found that the sheets embedded in either glucose or tannin diffract to around 3 Å.


Author(s):  
S. Wang ◽  
P. R. Buseck

Valleriite is an unusual mineral, consisting of intergrowths of sulfide layers (corresponding in structure to the mineral smythite - Fe9S11) and hydroxide layers (corresponding to brucite - Mg(OH2)). It has a composition of approximately 1.526[Mg.68Al.32(OH)2].[Fe1.07Cu.93S2] and consists of two interpenetrating lattices, each of which retains its individual structural and diffraction characteristics parallel to the layering. The valleriite structure is related to that of tochilinite, an unusual iron-rich mineral that is of considerable interest for the origin of certain carbonaceous chondrite meteorites and to those of franckeite and cylindrite, two minerals that are of interest because of their unique morphological and crystallographic properties, e.g., the distinctive curved form of cylindrite and the perfect mica-like cleavage with unusual striations and the long-period wavy structure of franckeite.Our selected-area electron diffraction (SAED) patterns and high-resolution transmission electron microscope (HRTEM) images of valleriite provide new structural data. A basic structure and a new superstructure have been observed.


2020 ◽  
Vol 8 ◽  
pp. 100121
Author(s):  
Noémie Ott ◽  
Claudia Cancellieri ◽  
Pavel Trtik ◽  
Patrik Schmutz

2021 ◽  
Vol 22 (13) ◽  
pp. 6709
Author(s):  
Xiao-Xuan Shi ◽  
Peng-Ye Wang ◽  
Hong Chen ◽  
Ping Xie

The transition between strong and weak interactions of the kinesin head with the microtubule, which is regulated by the change of the nucleotide state of the head, is indispensable for the processive motion of the kinesin molecular motor on the microtubule. Here, using all-atom molecular dynamics simulations, the interactions between the kinesin head and tubulin are studied on the basis of the available high-resolution structural data. We found that the strong interaction can induce rapid large conformational changes of the tubulin, whereas the weak interaction cannot. Furthermore, we found that the large conformational changes of the tubulin have a significant effect on the interaction of the tubulin with the head in the weak-microtubule-binding ADP state. The calculated binding energy of the ADP-bound head to the tubulin with the large conformational changes is only about half that of the tubulin without the conformational changes.


2001 ◽  
Vol 427 ◽  
pp. 73-105 ◽  
Author(s):  
LIOW JONG LENG

The impact of a spherical water drop onto a water surface has been studied experimentally with the aid of a 35 mm drum camera giving high-resolution images that provided qualitative and quantitative data on the phenomena. Scaling laws for the time to reach maximum cavity sizes have been derived and provide a good fit to the experimental results. Transitions between the regimes for coalescence-only, the formation of a high-speed jet and bubble entrapment have been delineated. The high-speed jet was found to occur without bubble entrapment. This was caused by the rapid retraction of the trough formed by a capillary wave converging to the centre of the cavity base. The converging capillary wave has a profile similar to a Crapper wave. A plot showing the different regimes of cavity and impact drop behaviour in the Weber–Froude number-plane has been constructed for Fr and We less than 1000.


Sign in / Sign up

Export Citation Format

Share Document