Quantitative analysis of the debris flow risk to concentrated rural settlement in southwest Sichuan, China

Author(s):  
Li Wei ◽  
Kaiheng Hu

<p><strong>Sichuan Province in southwest China is highly susceptible to debris flow disasters and suffers much damage to buildings and loss of human lives in concentrated rural settlements each year</strong><strong>.</strong><strong> By combining geographic information system (GIS) and Deep Encoding Network (DE-Net) methods, we proposed an automatic identification method for buildings highly susceptible to debris flows with large-scale digital elevation data and high-resolution remote sensing imagery based on a vulnerability matrix containing different threshold values of the horizontal distance (HD) and vertical distance (VD) between buildings and channels. A case study in Puge County, Sichuan Province, demonstrated the high identification potential of the method for buildings susceptible to debris flows in large areas with only scarce information available. Meanwhile, We chose </strong><strong>a high-risk village</strong><strong> in Puge County to study </strong><strong>debris flow risk to buildings and residents. Different</strong><strong> types of days and diurnal periods were considered in </strong><strong>the analysis of societal risk to residents</strong><strong>. The </strong><strong>results</strong><strong> indicated that societal risk to residents on holidays is always higher than that on weekdays, and societal risk at night is also much higher than that in the daytime. </strong><strong>The identification results of buildings vulnerability provide valuable information regarding high-risk residential areas to governments and facilitate targeted measure design at the initial planning stage, and the proposed method of societal risk provides a basis for decision-making in the planning of mitigation countermeasures in a specific settlement.</strong></p>

2021 ◽  
Vol 8 ◽  
Author(s):  
Li Wei ◽  
Kaiheng Hu ◽  
Jin Liu

Debris flows, which cause massive economic losses and tragic losses of life every year, represent serious threats to settlements in mountainous areas. Most deaths caused by debris flows in China occur in buildings, and the death toll is strongly dependent on the time people spend indoors. However, the role of time spent indoors in the quantitative analysis of debris flow risk has been studied only scarcely. We chose Luomo village in Sichuan atop a debris flow alluvial fan to study the influence of the temporal variation in the presence of people inside buildings on the societal risk. Two types of days (holidays vs. workdays) and two diurnal periods (daytime vs. nighttime) were considered in our risk evaluation model. A questionnaire survey was conducted for each family in the village, and the probability of the temporal impact of a debris flow on every household was calculated based on the average amount of time each member spent in the house. The debris flow hazard was simulated with FLO-2D to obtain the debris flow intensity and run-out map with return periods of 2, 10, 50, and 100 years. The risk to buildings and societal risk to residents were calculated quantitatively based on the probabilities of debris flow occurrence, the probability of the spatial impact, and the vulnerabilities of buildings and people. The results indicated that societal risk on holidays is always higher than that on weekdays, and societal risk at night is also much higher than that in the daytime, suggesting that the risk to life on holidays and at night is an important consideration. The proposed method permits us to obtain estimates of the probable economic losses and societal risk to people by debris flows in rural settlements and provides a basis for decision-making in the planning of mitigation countermeasures.


2018 ◽  
Author(s):  
Wenbo Xu ◽  
Xueru Zhang ◽  
Yangjuan Zou ◽  
Chunyu Zhang ◽  
Siyu Liu

Abstract. Debris flow, a very dangerous natural disaster, frequently occurs in mountainous areas of Sichuan province. China. Here, we applied the extenics method, which is normally used in single debris flow risk assessment, towards a large-scale debris flow risk assessment for the first time, and built the classical matter elements and joint domain matter elements for assessment of the debris flow risks in Sichuan province. Eight factors, including relative elevation, slope, rock hardness, rainfall, gully density, vegetation coverage, occurrences of historical debris flow and historical earthquake occurrences were selected for debris flow assessment by using geographic information system technology and weight analysis approach. Based on the risk assessment, the debris flow risk map was generated. Results indicate that areas with high risk and very high risk accounted for 21.32 % and 14.35 % of the whole province, respectively. 76 % of the verification points fall within the moderate, high and very high risk areas, suggesting high accuracy of extenics method in large-scale assessment areas. Thus, the Geographic Information System (GIS) and extenics based methods could provide a strong support for debris flow management in the region.


2021 ◽  
Author(s):  
Juan Daniel Rios-Arboleda

<p>This research expands the original analysis of Baker and Costa (1987) including data from Europe and South America with the objective to understand if there are emerging latitudinal patterns. In addition, the threshold proposed by Zimmermann et al. (1997) it is evaluated with the data from tropical zones finding that this is a good predictor.</p><p>Mainly, recent Debris Flow occurred in South America are analyzed with the aim of identifying the best risk management strategies and their replicability for developing countries, particularly, the cases that have occurred in Colombia and Venezuela in the last 30 years are analyzed in order to compare management strategies and understand which are the most vulnerable areas to this phenomenon.</p><p>It is concluded that large-scale and multinational projects such as SED ALP are required in South America to better characterize events that have left multiple fatalities (sometimes hundreds of people) and better understand how to manage the risk on densely populated areas.</p><p>Finally, the use of amateur videos is proposed to characterize these events in nations with limited budgets for projects such as SED ALP, methodology that will be described extensively in later works.</p>


2021 ◽  
pp. 751-756
Author(s):  
Sevostyanov A.V. Sevostyanov A.V. ◽  
V.A. Sevostyanov ◽  
A.P. Spiridonova

This article covers the issues raised by the objectives of the "The Program for complex development of rural territories" and its subprogram "Providing rural population with affordable and comfortable housing". The authors substantiate the concept "rural agglomeration" and make the suggestions on how to choose rural settlements and land plots suitable for large-scale development of low-density residential areas.


2014 ◽  
Vol 711 ◽  
pp. 388-391
Author(s):  
Ji Wei Xu ◽  
Ming Dong Zhang ◽  
Mao Sheng Zhang

On July 9 2013, debris flows occurred around Longchi town with large scale and wide harm, which was a great threat to people's life and property as well as reconstruction work. Debris flow ditch in the surrounding town was studied. This paper focused on loose materials, topography and rainfall characteristics, and explored the formation mechanism of debris flow in Longchi town. The result shows that: a small catchment area in valleys also have the risk of large range of accumulation of debris flow, the debris flow is caused by a lot of loose materials in mountains after earthquake and extreme rainfall. Research results contribute to a better understanding of trigger condition of debris flow after earthquake.


2021 ◽  
Author(s):  
Viktoriia Kurovskaia ◽  
Sergey Chernomorets ◽  
Tatyana Vinogradova ◽  
Inna Krylenko

<p>Debris flow is one of the most hazardous events that occur in all mountain regions.  Direct debris flow damage includes loss of human life, destruction of houses and facilities, damage to roads, rail lines and pipelines, vehicle accidents, and many other losses that are difficult to quantify. In July 2015, in the valley of the Barsemdara River (Gorno-Badakhshan Autonomous Region, Tajikistan), plenty of debris flows were observed. As a result, residential areas, social facilities, and infrastructure in Barsem village and neighboring settlements were destroyed and flooded. Besides, debris flow deposits blocked the Gunt River with the subsequent formation of a dammed lake with a maximum volume of 4.0 million m<sup>3</sup>. <br>The aim of this study was to obtain hydrographs of debris flow waves in the source and detailed zoning of the Barsemdara river valley. For the debris flow source, we applied transport-shift model. Equations of this model were developed by Yu.B. Vinogradov basing on Chemolgan experiments of artificial debris flows descending. Previously, the model characteristics were compared with the observational data of the Chemolgan experiments, and the results were found to be satisfactory [Vinogradova, Vinogradov, 2017]. Based on the equations, a computer program was created in the programming language Python. Besides, we improved the model by adding flow velocity calculations, and eventually it became possible to obtain hydrographs. To investigate quantitative characteristics of the debris flow in the river valley we implied a two-dimensional (2D) model called FLO-2D PRO. It is based on the numerical methods for solving the system of Saint-Venant equations. Besides, in this model, it is assumed that debris flows move like a Bingham fluid (viscoplastic fluid) [O'Brien et al., 1993]. The input information for modeling was digital elevation model (DEM) and previously obtained hydrographs. The output information included flow depth, velocity distribution and hazard level of the territory. The results of the study will be reported.</p><p>1.    Vinogradova T.A., Vinogradov A.Y. The Experimental Debris Flows in the Chemolgan River Basin // Natural Hazards. – 2017. – V. 88. – P. 189-198.<br>2.    O'Brien J. S., Julien P.Y., Fullerton W.T. Two-dimensional water flood and mudflow simulation //Journal of hydraulic engineering. – 1993. – V. 119, No 2. – P. 244-261.</p>


2018 ◽  
Vol 175 ◽  
pp. 04025
Author(s):  
Pengyu Chen ◽  
Ying Kong

Luanchuan County, located in the mountains of Western Henan Province, is characterized by poor geological environment and abundant material sources and rainfalls. Debris flows have occurred many times in this county, and in some gully debris flows exhibit a large scale, requiring risk assessment. In the multi-factor comprehensive assessment methods for debris flow risk, it is really important to determine the weight of each factor since this affects the reliability of the assessment results. Given that the subjective weighting method can accurately reflect the importance of each factor, in order to improve the reliability of subjective weighting, the group decision making method is used to determine the weight of each factor. Group decision making is realized using the analytic hierarchy process and the data fusion algorithm. In this method, the expert combination weight is determined; on this basis, a model for comprehensive assessment of debris flow risk is established by the linear weighted sum method, and risk assessment is performed for gullies with medium to large-scale debris flows in the study area. The assessment results show that all debris flow gullies face minor to moderate risks. For gullies with high risk degree, it is suggested to timely clear material sources in channels and construct or reinforce retaining dams in order to prevent re-occurrence of debris flows.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Lijuan Wang ◽  
Ming Chang ◽  
Xiangyang Dou ◽  
Guochao Ma ◽  
Chenyuan Yang

Both the Wenchuan earthquake on May 12, 2008, and the Lushan earthquake on April 12, 2013, produced many coseismic landslides along the Nanya River in Shimian City. Subsequent debris flows that initiated from these landslides and are triggered by intense rainfall become the secondary hazard in the years after the earthquake; in particular, some debris flows led to a serious river blocking event. For example, the Guangyuanbao debris flow which occurred on July 04, 2013, partly blocked the Nanya River, presenting a major threat to the national highway and residential areas. To analyze the pattern of landslide damming, we analyzed numerical simulations of the movement characteristics of the Guangyuanbao debris flow using rainfall intensities with varying recurrence periods of 5, 20, and 50 years. The accuracy of the spreading of the numerical simulation is about 90%. The simulation indicated a small volume of sediment entering the river for a rainfall under 5-year return period. A debris flow induced by rainfall under 20-year return period partly blocked the river, while rainfall under 50-year return period has potential to block the river completely. This proposed analysis of river blocking induced by a debris flow could be used for disaster prevention in earthquake-stricken area.


2001 ◽  
Vol 7 (3) ◽  
pp. 221-238 ◽  
Author(s):  
Oldrich Hungr ◽  
S. G. Evans ◽  
M. J. Bovis ◽  
J. N. Hutchinson

Abstract As a result of the widespread use of the landslide classifications of Varnes (1978), and Hutchinson (1988), certain terms describing common types of flow-like mass movements have become entrenched in the language of engineering geology. Example terms include debris flow, debris avalanche and mudslide. Here, more precise definitions of the terms are proposed, which would allow the terms to be retained with their original meanings while making their application less ambiguous. A new division of landslide materials is proposed, based on genetic and morphological aspects rather than arbitrary grain-size limits. The basic material groups include sorted materials: gravel, sand, silt, and clay, unsorted materials: debris, earth and mud, peat and rock. Definitions are proposed for relatively slow non-liquefied sand or gravel flows, extremely rapid sand, silt or debris flow slides accompanied by liquefaction, clay flow slides involving extra-sensitive clays, peat flows, slow to rapid earth flows in nonsensitive plastic clays, debris flows which occur in steep established channels or gullies, mud flows considered as cohesive debris flows, debris floods involving massive sediment transport at limited discharges, debris avalanches which occur on open hill slopes and rock avalanches formed by large scale failures of bedrock.


Sign in / Sign up

Export Citation Format

Share Document