Impact of transpiration rates on foliar silicon concentrations across a range of angiosperm species exposed to water stress.

Author(s):  
Thomas Guzman ◽  
Regis Burlett ◽  
Camille Delvigne ◽  
Camille Parise ◽  
Sabrina Dubois ◽  
...  

<p>It is widely observed that silicon availability (Si) can enhance plant growth and increase the tolerance of plants to a range of biotic and abiotic stresses, although the specific mechanisms underlying these positive effects are not always understood. Silicon is acquired by plants both actively via transporters located in roots and/or passively as plants transport water during transpiration. The relative importance of each of these mechanisms depends strongly on the plant species and the level of stress experienced by the plant. Currently there is a lively debate in the literature regarding the relationship between plant Si accumulation and transpiration rates. Rates of transpiration can affect the amount of Si moving through a plant and in turn the concentration of available Si in soils can make the plant less vulnerable to the effects of drought stress. In order to better understand these relationships between plant water fluxes and Si accumulation in leaves, nine angiosperm tree species (from five families including both deciduous and evergreen species) were grown in a greenhouse and exposed to contrasting watering treatments. For each species, three trees were well watered throughout the growing season whilst three others were exposed to water stress. Whole plant transpiration fluxes were monitored continuously with balances, and pre-dawn leaf water potentials were measured regularly during the experiment. In addition the foliar Si concentrations of each plant were measured by ICP-AES after alkaline fusion both at the beginning and the middle of the growing season. In this presentation, we show our first results examining the relationship between leaf Si concentrations and plant water fluxes in contrasting species. We tested the hypothesis that drought stress significantly decreased the foliar Si concentration in all of the species measured and that foliar Si concentrations were correlated with the cumulative transpiration rates of plants and thus expected to increase significantly over the growing season. </p>

HortScience ◽  
1992 ◽  
Vol 27 (9) ◽  
pp. 996-999 ◽  
Author(s):  
R.C. Beeson

Elaeagnus pungens Thunb., Ligustrum japonicum Thunb., Photinia ×fraseri `Red Top', and Rhododendron sp. `Fashion' (azalea) growing in 10.4-liter containers were irrigated only at dawn with overhead impact sprinklers or pulse-irrigated three or four times each day with a drip system. Plant water potential was measured diurnally each week for 24 weeks, and growth was measured at the end of the growing season in December. Overhead irrigation resulted in less growth of all species than plants maintained near 100% container moisture with pulse irrigation. With the exception of photinia, more growth was associated with significantly lower daily accumulated water stress. Water stress of overhead-irrigated plants was generally not severe enough to cause stomata1 closure.


1993 ◽  
Vol 73 (2) ◽  
pp. 525-529 ◽  
Author(s):  
Allen G. Good ◽  
James L. Maclagan

The physiological responses of different species of Brassica to induced drought stress were studied by analysing the relationships between relative water content, leaf water potential and leaf osmotic potential during the onset of drought stress. These data indicate that while there was a decrease in leaf osmotic potential with the onset of drought stress, this did not result from a net increase in solutes. Therefore, these genotypes of Brassica do not appear able to osmoregulate under these drought conditions. Key words: Brassica, drought, osmoregulation, water stress


2009 ◽  
Vol 55 (4) ◽  
pp. 388-394 ◽  
Author(s):  
Scott M. Liddycoat ◽  
Bruce M. Greenberg ◽  
David J. Wolyn

Plant growth-promoting rhizobacteria (PGPR) can have positive effects on vigour and productivity, especially under stress conditions. In asparagus ( Asparagus officinalis L.) field culture, seeds are planted in high-density nurseries, and 1-year-old crowns are transplanted to production fields. Performance can be negatively affected by water stress, transplant shock, and disease pressure on wounded roots. PGPR inoculation has the potential to alleviate some of the stresses incurred in the production system. In this study, the effects of PGPR ( Pseudomonas spp.) treatment were determined on 3-week-old greenhouse-grown seedlings and germinating seeds of 2 asparagus cultivars. The pots were irrigated to a predetermined level that resulted in optimum growth or the plants were subjected to drought or flooding stress for 8 weeks. The cultivars responded differently to PGPR: single inoculations of seedlings enhanced growth of ‘Guelph Millennium’ under optimum conditions and ‘Jersey Giant’ seedlings under drought stress. Seed inoculations with PGPR resulted in a positive response only for ‘Guelph Millennium’, for which both single or multiple inoculations enhanced plant growth under drought stress.


2020 ◽  
Vol 2 (4) ◽  
pp. 451-460
Author(s):  
Bui The Khuynh ◽  
Vu Ngoc Thang ◽  
Vu Dinh Chinh ◽  
Pham Thi Thom

A pot experiment was conducted in a net house to evaluate the effects of drought stress (a 20-day water withholding treatment from 100-120 days after planting) on the growth and physiology of five sugarcane cultivars. The results showed that water stress at an early stage significantly affected sugarcane growth and physiology. Water stress resulted in reductions in plant height, stalk diameter, and leaf number of sugarcane, in addition to reductions in the photosynthetic pigment content, Fv/Fm, and SPAD (Soil Plant Analysis Development) readings after the 20-day withholding water period (120 DAP), and in stem, root, and leaf fresh weights, and leaf area at 150 DAP. Besides, drought stress led to increases in stomata density and decreases in stomata length. Variation was also found among the cultivars in response to water stress. Significant genotypic differences in stem fresh weight and leaf area under water stress among the cultivars were observed. The highest value of stem fresh weight under stressed conditions was recorded in ROC22 (50.6 g), followed by QĐ159 (46.5g), ROC16 (46.2g), ROC10 (46.1g), and VL06 (44.4g). However, the highest DTI was recorded in ROC16, followed by VL06, ROC10, QĐ93-159, and ROC22, respectively.


2015 ◽  
Vol 60 (4) ◽  
pp. 407-417
Author(s):  
Seyed Mirtaheri ◽  
Farzad Paknejad ◽  
Marieh Behdad

In order to evaluate the relationship between yield and some relevant traits and estimation of the most effective traits on grain yield, a split-plot experiment based on completely randomized block design with four replications was carried out in 2006-2007 in the research field of Islamic Azad University of Karaj. The irrigation schemes scheduled as main plots included the following: (T1) 40% moisture depletion throughout the growing season (control); (T2) 60% moisture depletion throughout the growing season; (T3) 80% moisture depletion throughout the growing season; (T4) no irrigation during the stem elongation stage and continuing with adequate irrigation to the end of the growing season; (T5) no irrigation from the stem elongation stage to the end of the growing season; (T6) no irrigation at flowering and continuing with adequate irrigation to the end of the growing season; (T7) no irrigation from flowering to the end of the growing season; and (T8) no irrigation from the milk stage to the end of the growing season; and 2 wheat cultivars [Marvdasht (V1), Chamran (V2)] as sub-plots. According to the results of simple correlation, the grain yield exhibited the most positive correlation with biomass (0.877), number of infertile spikelets (0.876) and harvest index (0.855). The results of step-wise regression showed that, in the absence of drought stress, biomass and harvest index had respectively the most important effects on the grain yield but both exhibited different results under drought stress. Path analysis results showed that the most important effect on the grain yield in the total tested treatments was related to the biomass, justifying a total of 87% of grain yield variations, 72% of which is the direct effect of this trait on grain yield.


Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 86
Author(s):  
Chen Ru ◽  
Xiaotao Hu ◽  
Wene Wang ◽  
Hui Ran ◽  
Tianyuan Song ◽  
...  

Precise irrigation management of grapevines in greenhouses requires a reliable method to easily quantify and monitor the grapevine water status to enable effective manipulation of the water stress of the plants. This study evaluated the applicability of crop water stress index (CWSI) based on the leaf temperature for diagnosing the grapevine water status. The experiment was conducted at Yuhe Farm (northwest China), with drip-irrigated grapevines under three irrigation treatments. Meteorological factors, soil moisture contents, leaf temperature, growth indicators including canopy coverage and fruit diameter, and physiological indicators including SPAD (relative chlorophyll content), stem water potential (φs), stomatal conductance (gs), and transpiration rate (E) were studied during the growing season. The results show that the relationship between the leaf-air temperature difference (Tc-Ta) and the plant water status indicators (φs, gs, E) were significant (P < 0.05), and the relationship between gs, E and Tc-Ta was the closest, with R2 values ranging from 0.530–0.604 and from 0.545–0.623, respectively. CWSI values are more easily observed on sunny days, and it was determined that 14:00 BJS is the best observation time for the CWSI value under different non-water-stressed baselines. There is a reliable linear correlation between the CWSI value and the soil moisture at 0–40 cm (P < 0.05), which could provide a reference when using the CWSI to diagnose the water status of plants. Compared with the Tc-Ta value, the CWSI could more accurately monitor the plant water status, and above the considered indictors, gs has the greatest correlation with the CWSI.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1012 ◽  
Author(s):  
Kristine Vander Mijnsbrugge ◽  
Arion Turcsan ◽  
Stefaan Moreels ◽  
Michiel Van Goethem ◽  
Steven Meeus ◽  
...  

Background and Objectives: Summer droughts are expected to increase in central and western Europe both in terms of frequency and intensity, justifying studies on longer term legacies of drought stress on tree species and their hybrids. Materials and Methods: We studied the longer-term after effects of water withholding and re-watering in the first growing season of potted seedlings from the sympatric species Quercus robur L., Q. petraea (Matt.) Liebl. and their morphological intermediates. Phenology, growth, and plant architecture were examined after a cut-back of the stems at the end of the third growing season. Results: The legacy of the first-year water limitation is faded in the phenological response. Nonetheless, leaf senescence occurred later in offspring from Q. robur than in offspring from Q. petraea at the end of the fourth growing season and leafing out tended to be later in the subsequent growing season. Offspring from the intermediate forms displayed variable phenological responses. Height and radial growth were still affected by the drought stress in a taxon-dependent way, with the offspring from Q. petraea displaying growth reduction both in height and diameter, whereas offspring from Q. robur did not show any differences anymore between control and treated plants, demonstrating better post-stress recovery in Q. robur. Offspring from morphological intermediates responded again in a variable way. Although the number of reshoots after cutting back the stems was not affected anymore by the drought treatment in the first growing season, the number of side shoots on the reshoots was still reduced in the drought treated group of plants, independent of the taxon of the mother tree. Conclusions: Together, our results demonstrate the longer-lasting effects of drought stress on oak saplings with regard to growth and plant architecture, with the first being taxon dependent.


2015 ◽  
Vol 39 (2) ◽  
pp. 347-365 ◽  
Author(s):  
Alexandre Grondin ◽  
Ramil Mauleon ◽  
Vincent Vadez ◽  
Amelia Henry

Author(s):  
Daniel Alejandro Kunz ◽  
Gustavo Cortez ◽  
Jéssica Castro de Carvalho ◽  
Carlos Eduardo Ribeiro ◽  
Neuton Carlos Palmeiras Galvão ◽  
...  

2016 ◽  
Vol 37 (6) ◽  
pp. 3941 ◽  
Author(s):  
Viviane Ruppenthal ◽  
Tiago Zoz ◽  
Fábio Steiner ◽  
Maria Do Carmo Lana ◽  
Deise Dalazen Castagnara

Beneficial effects of silicon (Si) in the plants growth under conditions of drought stress have been associated with to uptake and accumulation ability of element by different species. However, the effects of Si on soybean under water stress are still incipient and inconclusive. This study investigated the effect of Si application as a way to confer greater soybean tolerance to drought stress. The experiment was carried out in 20-L pots under greenhouse conditions. Treatments were arranged in a randomized block design in a 2 × 4 factorial: two water regimes (no stress or water stress) and four Si rates (0, 50, 100 and 200 mg kg–1). Soybean plants were grown until beginning flowering (R1) growth stage with soil moisture content near at the field capacity, and then it started the differentiation of treatments under drought by the suspension of water supply. Changes in relative water content (RWC) in leaf, electrolyte leakage from cells, peroxidase activity, plant nutrition and growth were measured after 7 days of drought stress and 3 days recovery. The RWC in soybean leaves decreased with Si rates in the soil. Silicon supply in soil with average content of this element, reduced dry matter production of soybean under well-irrigated conditions and caused no effect on dry matter under drought stress. The nitrogen uptake by soybean plants is reduced with the Si application under drought stress. The results indicated that the Si application stimulated the defense mechanisms of soybean plants, but was not sufficient to mitigate the negative effects of drought stress on the RWC and dry matter production.


Sign in / Sign up

Export Citation Format

Share Document