El Niño variability mediates 21st century growth effects of climate change

Author(s):  
Christopher Callahan ◽  
Justin Mankin

<p>Understanding the effect of climate change on global economic growth is critical to informing optimal mitigation and adaptation policy. Many recent efforts have been made to empirically quantify the roles of weather and climate in economic growth, but these efforts have generally focused on changes in mean climate rather than changes in climate variability. Climate change is expected to alter modes of climate variability, so fully quantifying the costs of climate change requires both understanding the effects of climate variability on economic growth and constraining how this variability will evolve under forcing. Here we combine historical climate and economic data with multiple climate model ensembles to quantify the economic growth effects of El Niño and examine how these effects evolve in the 21<sup>st</sup> century. Preliminary results show substantial negative effects of El Niño on growth, with historical events reducing growth by >5 percentage points over 5 years in countries whose temperature variability is tightly correlated with ENSO. We then examine how climate change influences El Niño and its growth effects in both multi-model and single-model ensembles, allowing us to isolate the role of internal climate variability in shaping the evolution of ENSO statistics in the 21<sup>st</sup> century. Climate change is generally projected to increase El Niño frequency and thus the resulting growth penalties, but internal variability generates a wide spread of responses, all of which are consistent with the same forcing. These results highlight how internal variability can influence both interannual El Niño occurrence and long-term changes in its statistics, with consequences for future economic growth. Moreover, these results illustrate the range of climate impact trajectories that are consistent with the same emissions, providing critical information for adaptation decision-makers needing to construct robust socioeconomic systems in the face of 21<sup>st</sup> century climate change.</p>

2021 ◽  
Author(s):  
Sebastian Sippel ◽  
Nicolai Meinshausen ◽  
Eniko Székely ◽  
Erich Fischer ◽  
Angeline G. Pendergrass ◽  
...  

<p>Warming of the climate system is unequivocal and substantially exceeds unforced internal climate variability. Detection and attribution (D&A) employs spatio-temporal fingerprints of the externally forced climate response to assess the magnitude of a climate signal, such as the multi-decadal global temperature trend, while internal variability is often estimated from unforced (“control”) segments of climate model simulations (e.g. Santer et al. 2019). Estimates of the exact magnitude of decadal-scale internal variability, however, remain uncertain and are limited by relatively short observed records, their entanglement with the forced response, and considerable spread of simulated variability across climate models. Hence, a limitation of D&A is that robustness and confidence levels depend on the ability of climate models to correctly simulate internal variability (Bindoff et al., 2013).</p><p>For example, the large spread in simulated internal variability across climate models implies that the observed 40-year global mean temperature trend of about 0.76°C (1980-2019) would exceed the standard deviation of internally generated variability of a set of `low variability' models by far (> 5σ), corresponding to vanishingly small probabilities if taken at face value. But the observed trend would exceed the standard deviation of a few `high-variability' climate models `only' by a factor of about two, thus unlikely to be internally generated but not practically impossible given unavoidable climate system and observational uncertainties. This illustrates the key role of model uncertainty in the simulation of internal variability for D&A confidence estimates.</p><p>Here we use a novel statistical learning method to extract a fingerprint of climate change that is robust towards model differences and internal variability, even of large amplitude. We demonstrate that externally forced warming is distinct from internal variability and detectable with high confidence on any state-of-the-art climate model, even those that simulate the largest magnitude of unforced multi-decadal variability. Based on the median of all models, it is extremely likely that more than 85% of the observed warming trend over the last 40 years is externally driven. Detection remains robust even if their main modes of decadal variability would be scaled by a factor of two. It is extremely likely that at least 55% of the observed warming trend over the last 40 years cannot be explained by internal variability irrespective of which climate model’s natural variability estimates are used.</p><p>Our analysis helps to address this limitation in attributing warming to external forcing and provides a novel perspective for quantifying the magnitude of forced climate change even under uncertain but potentially large multi-decadal internal climate variability. This opens new opportunities to make D&A fingerprints robust in the presence of poorly quantified yet important features inextricably linked to model structural uncertainty, and the methodology may contribute to more robust detection and attribution of climate change to its various drivers.</p><p> </p><p>Bindoff, N.L., et al., 2013. Detection and attribution of climate change: from global to regional. IPCC AR5, WG1, Chapter 10.</p><p>Santer, B.D., et al., 2019. Celebrating the anniversary of three key events in climate change science. <em>Nat Clim Change</em> <strong>9</strong>(3), pp. 180-182.</p>


2020 ◽  
Author(s):  
Fabian Willibald ◽  
Sven Kotlarski ◽  
Adrienne Grêt-Regamey ◽  
Ralf Ludwig

Abstract. Snow is a sensitive component of the climate system. In many parts of the world, water, stored as snow, is a vital resource for agriculture, tourism and the energy sector. As uncertainties in climate change assessments are still relatively large, it is important to investigate the interdependencies between internal climate variability and anthropogenic climate change and their impacts on snow cover. We use regional climate model data from a new single model large ensemble with 50 members (ClimEX LE) as driver for the physically based snow model SNOWPACK at eight locations across the Swiss Alps. We estimate the contribution of internal climate variability to uncertainties in future snow trends by applying a Mann-Kendall test for consecutive future periods of different lengths (between 30 and 100 years) until the end of the 21st century. Under RCP8.5, we find probabilities between 15 % and 50 % that there will be no significantly negative trend in future mean snow depths over a period of 50 years. While it is important to understand the contribution of internal climate variability to uncertainties in future snow trends, it is likely that the variability of snow depth itself changes with anthropogenic forcing. We find that relative to the mean, inter-annual variability of snow increases in the future. A decrease of future mean snow depths, superimposed by increases in inter-annual variability will exacerbate the already existing uncertainties that snow-dependent economies will have to face in the future.


2017 ◽  
Vol 30 (23) ◽  
pp. 9555-9573 ◽  
Author(s):  
Dirk Olonscheck ◽  
Dirk Notz

This paper introduces and applies a new method to consistently estimate internal climate variability for all models within a multimodel ensemble. The method regresses each model’s estimate of internal variability from the preindustrial control simulation on the variability derived from a model’s ensemble simulations, thus providing practical evidence of the quasi-ergodic assumption. The method allows one to test in a multimodel consensus view how the internal variability of a variable changes for different forcing scenarios. Applying the method to the CMIP5 model ensemble shows that the internal variability of global-mean surface air temperature remains largely unchanged for historical simulations and might decrease for future simulations with a large CO2 forcing. Regionally, the projected changes reveal likely increases in temperature variability in the tropics, subtropics, and polar regions, and extremely likely decreases in midlatitudes. Applying the method to sea ice volume and area shows that their respective internal variability likely or extremely likely decreases proportionally to their mean state, except for Arctic sea ice area, which shows no consistent change across models. For the evaluation of CMIP5 simulations of Arctic and Antarctic sea ice, the method confirms that internal variability can explain most of the models’ deviation from observed trends but often not the models’ deviation from the observed mean states. The new method benefits from a large number of models and long preindustrial control simulations, but it requires only a small number of ensemble simulations. The method allows for consistent consideration of internal variability in multimodel studies and thus fosters understanding of the role of internal variability in a changing climate.


2018 ◽  
Vol 49 (2) ◽  
pp. 421-437 ◽  
Author(s):  
Mei-Jia Zhuan ◽  
Jie Chen ◽  
Ming-Xi Shen ◽  
Chong-Yu Xu ◽  
Hua Chen ◽  
...  

Abstract This study proposes a method to estimate the timing of human-induced climate change (HICC) emergence from internal climate variability (ICV) for hydrological impact studies based on climate model ensembles. Specifically, ICV is defined as the inter-member difference in a multi-member ensemble of a climate model in which human-induced climate trends have been removed through a detrending method. HICC is defined as the mean of multiple climate models. The intersection between HICC and ICV curves is defined as the time of emergence (ToE) of HICC from ICV. A case study of the Hanjiang River watershed in China shows that the temperature change has already emerged from ICV during the last century. However, the precipitation change will be masked by ICV up to the middle of this century. With the joint contributions of temperature and precipitation, the ToE of streamflow occurs about one decade later than that of precipitation. This implies that consideration for water resource vulnerability to climate should be more concerned with adaptation to ICV in the near-term climate (present through mid-century), and with HICC in the long-term future, thus allowing for more robust adaptation strategies to water transfer projects in China.


2020 ◽  
Vol 14 (9) ◽  
pp. 2909-2924
Author(s):  
Fabian Willibald ◽  
Sven Kotlarski ◽  
Adrienne Grêt-Regamey ◽  
Ralf Ludwig

Abstract. Snow is a sensitive component of the climate system. In many parts of the world, water stored as snow is a vital resource for agriculture, tourism and the energy sector. As uncertainties in climate change assessments are still relatively large, it is important to investigate the interdependencies between internal climate variability and anthropogenic climate change and their impacts on snow cover. We use regional climate model data from a new single-model large ensemble with 50 members (ClimEX LE) as a driver for the physically based snow model SNOWPACK at eight locations across the Swiss Alps. We estimate the contribution of internal climate variability to uncertainties in future snow trends by applying a Mann–Kendall test for consecutive future periods of different lengths (between 30 and 100 years) until the end of the 21st century. Under RCP8.5, we find probabilities between 10 % and 60 % that there will be no significant negative trend in future mean snow depths over a period of 50 years. While it is important to understand the contribution of internal climate variability to uncertainties in future snow trends, it is likely that the variability of snow depth itself changes with anthropogenic forcing. We find that relative to the mean, interannual variability of snow increases in the future. A decrease in future mean snow depths, superimposed by increases in interannual variability, will exacerbate the already existing uncertainties that snow-dependent economies will have to face in the future.


2019 ◽  
Vol 10 (4) ◽  
pp. 741-763 ◽  
Author(s):  
Falko Ueckerdt ◽  
Katja Frieler ◽  
Stefan Lange ◽  
Leonie Wenz ◽  
Gunnar Luderer ◽  
...  

Abstract. Both climate-change damages and climate-change mitigation will incur economic costs. While the risk of severe damages increases with the level of global warming (Dell et al., 2014; IPCC, 2014b, 2018; Lenton et al., 2008), mitigating costs increase steeply with more stringent warming limits (IPCC, 2014a; Luderer et al., 2013; Rogelj et al., 2015). Here, we show that the global warming limit that minimizes this century's total economic costs of climate change lies between 1.9 and 2 ∘C, if temperature changes continue to impact national economic growth rates as observed in the past and if instantaneous growth effects are neither compensated nor amplified by additional growth effects in the following years. The result is robust across a wide range of normative assumptions on the valuation of future welfare and inequality aversion. We combine estimates of climate-change impacts on economic growth for 186 countries (applying an empirical damage function from Burke et al., 2015) with mitigation costs derived from a state-of-the-art energy–economy–climate model with a wide range of highly resolved mitigation options (Kriegler et al., 2017; Luderer et al., 2013, 2015). Our purely economic assessment, even though it omits non-market damages, provides support for the international Paris Agreement on climate change. The political goal of limiting global warming to “well below 2 degrees” is thus also an economically optimal goal given above assumptions on adaptation and damage persistence.


2015 ◽  
Vol 28 (16) ◽  
pp. 6443-6456 ◽  
Author(s):  
David W. J. Thompson ◽  
Elizabeth A. Barnes ◽  
Clara Deser ◽  
William E. Foust ◽  
Adam S. Phillips

Abstract Internal variability in the climate system gives rise to large uncertainty in projections of future climate. The uncertainty in future climate due to internal climate variability can be estimated from large ensembles of climate change simulations in which the experiment setup is the same from one ensemble member to the next but for small perturbations in the initial atmospheric state. However, large ensembles are invariably computationally expensive and susceptible to model bias. Here the authors outline an alternative approach for assessing the role of internal variability in future climate based on a simple analytic model and the statistics of the unforced climate variability. The analytic model is derived from the standard error of the regression and assumes that the statistics of the internal variability are roughly Gaussian and stationary in time. When applied to the statistics of an unforced control simulation, the analytic model provides a remarkably robust estimate of the uncertainty in future climate indicated by a large ensemble of climate change simulations. To the extent that observations can be used to estimate the amplitude of internal climate variability, it is argued that the uncertainty in future climate trends due to internal variability can be robustly estimated from the statistics of the observed climate.


2021 ◽  
Author(s):  
Leonard F. Borchert ◽  
Alexander J. Winkler

<p>Vegetation in the northern high latitudes shows a characteristic pattern of persistent changes as documented by multi-decadal satellite observations. The prevailing explanation that these mainly increasing trends (greening) are a consequence of external CO<sub>2</sub> forcing, i.e., due to the ubiquitous effect of CO2-induced fertilization and/or warming of temperature-limited ecosystems, however does not explain why some areas also show decreasing trends of vegetation cover (browning). We propose here to consider the dominant mode of multi-decadal internal climate variability in the north Atlantic region, the Atlantic Multidecadal Variability (AMV), as the missing link in the explanation of greening and browning trend patterns in the northern high latitudes. Such a link would also imply potential for decadal predictions of ecosystem changes in the northern high latitudes.</p><p>An analysis of observational and reanalysis data sets for the period 1979-2019 shows that locations characterized by greening trends largely coincide with warming summer temperature and increasing precipitation. Wherever either cooling or decreasing precipitation occurs, browning trends are observed over this period. These precipitation and temperature patterns are significantly correlated with a North Atlantic sea surface temperature index that represents the AMV signal, indicating its role in modulating greening/browning trend patterns in the northern high latitudes.</p><p>Using two large ensembles of coupled Earth system model simulations (100 members of MPI-ESM-LR Grand Ensemble and 32 members of the IPSL-CM6A-LR Large Ensemble), we separate the greening/browning pattern caused by external CO<sub>2</sub> forcing from that caused by internal climate variability associated with the AMV. These sets of model simulations enable a clean separation of the externally forced signal from internal variability. While the greening and browning patterns in the simulations do not agree with observations in terms of magnitude and location, we find consistent internally generated greening/browning patterns in both models caused by changes in temperature and precipitation linked to the AMV signal. These greening/browning trend patterns are of the same magnitude as those caused by the external forcing alone. Our work therefore shows that internally-generated changes of vegetation in the northern lands, driven by AMV, are potentially as large as those caused by external CO<sub>2</sub> forcing. We thus argue that the observed pattern of greening/browning in the northern high latitudes could originate from the combined effect of rising CO<sub>2</sub> as well as the AMV.</p>


2018 ◽  
Vol 22 (9) ◽  
pp. 4867-4873 ◽  
Author(s):  
Douglas Maraun ◽  
Martin Widmann

Abstract. We demonstrate both analytically and with a modelling example that cross-validation of free-running bias-corrected climate change simulations against observations is misleading. The underlying reasoning is as follows: a cross-validation can have in principle two outcomes. A negative (in the sense of not rejecting a null hypothesis), if the residual bias in the validation period after bias correction vanishes; and a positive, if the residual bias in the validation period after bias correction is large. It can be shown analytically that the residual bias depends solely on the difference between the simulated and observed change between calibration and validation periods. This change, however, depends mainly on the realizations of internal variability in the observations and climate model. As a consequence, the outcome of a cross-validation is also dominated by internal variability, and does not allow for any conclusion about the sensibility of a bias correction. In particular, a sensible bias correction may be rejected (false positive) and a non-sensible bias correction may be accepted (false negative). We therefore propose to avoid cross-validation when evaluating bias correction of free-running bias-corrected climate change simulations against observations. Instead, one should evaluate non-calibrated temporal, spatial and process-based aspects.


2021 ◽  
Vol 15 (3) ◽  
pp. 1645-1662
Author(s):  
Alan Huston ◽  
Nicholas Siler ◽  
Gerard H. Roe ◽  
Erin Pettit ◽  
Nathan J. Steiger

Abstract. Changes in glacier length reflect the integrated response to local fluctuations in temperature and precipitation resulting from both external forcing (e.g., volcanic eruptions or anthropogenic CO2) and internal climate variability. In order to interpret the climate history reflected in the glacier moraine record, the influence of both sources of climate variability must therefore be considered. Here we study the last millennium of glacier-length variability across the globe using a simple dynamic glacier model, which we force with temperature and precipitation time series from a 13-member ensemble of simulations from a global climate model. The ensemble allows us to quantify the contributions to glacier-length variability from external forcing (given by the ensemble mean) and internal variability (given by the ensemble spread). Within this framework, we find that internal variability is the predominant source of length fluctuations for glaciers with a shorter response time (less than a few decades). However, for glaciers with longer response timescales (more than a few decades) external forcing has a greater influence than internal variability. We further find that external forcing also dominates when the response of glaciers from widely separated regions is averaged. Single-forcing simulations indicate that, for this climate model, most of the forced response over the last millennium, pre-anthropogenic warming, has been driven by global-scale temperature change associated with volcanic aerosols.


Sign in / Sign up

Export Citation Format

Share Document