High-resolution inversion of fossil fuel emissions and biogenic fluxes over the Paris region during 2019-2020

Author(s):  
Nalini Krishnankutty ◽  
Thomas Lauvaux ◽  
Charbel Abdallah ◽  
Jinghui Lian ◽  
Philippe Ciais ◽  
...  

<p>The study aims to quantify the Paris region’s CO and CO<sub>2</sub> emissions from fossil fuel and biogenic CO<sub>2</sub> fluxes during the spring season (March-May) of 2019-2020, based on a network of six ground-based stations. Hourly CO<sub>2</sub> mixing ratio gradients between the station Saclay (SAC), located in the south-west of Paris region and five other sites in the urban area are used to estimate the 5-day mean daytime budgets of the fossil fuel CO<sub>2</sub> emissions and biogenic fluxes. The inversion relies on the transport model simulations using the Weather Research and Forecasting model at 1 km × 1 km horizontal resolution, combined with 1-km fossil fuel CO<sub>2</sub> emissions from the Origins inventory, and biogenic CO<sub>2</sub> fluxes from the VPRM model. The methodology is based on a Lagrangian particle dispersion model (LPDM) approach that could efficiently determine the sensitivity of downwind mixing ratio changes to upwind sources. The inversion adjusts both fossil fuel emissions and VPRM biogenic CO<sub>2</sub> fluxes using tower observations and transport matrix generated from LPDM hourly footprints. The emission map shows noticeable changes in the central Paris region, whereas the biogenic fluxes do not show any noticeable change after inversion. This can happen if the choice of background station is not representative concerning biogenic fluxes.  The inversion could reduce the uncertainty up to 20% for the fossil fuel emission but the biogenic flux uncertainty does not show a significant difference from the prior. In comparison with the 2019 pattern, the rate of increase in fossil fuel emission after inversion was considerably reduced for 2020 (up to 20-30%). The same pattern is observed in the 5-day total flux time series where the magnitude of posterior fluxes falls below prior fluxes except for the first few days of March, before the lockdown period. This aspect is further analysed in the second part of the study. Analysis of hourly mixing ratios generated from prior and posterior fluxes shows that prior mixing ratios increased as a result of large observed CO<sub>2</sub> gradients. A comparison of diurnal mixing ratios generated from prior and posterior fluxes shows that the mixing ratio gradient of all the sites shows a similar pattern, but the direct observations show an offset in the diurnal pattern. The second part of the study aims to quantify the changes in the CO<sub>2</sub> emission pattern over the Paris region during the recent COVID19 lockdown during 2020. Here, a multisystem comparison is carried out for the Lagrangian-based inversion and Eulerian WRF-CO<sub>2</sub> inversion. Both systems capture the effect of lockdown, with a significant reduction in traffic emissions. To improve the inversion and to reduce the uncertainty, the third part of the study uses a gridded CO/CO<sub>2</sub> mole fraction ratio to further constrain anthropogenic CO<sub>2</sub> emissions. Our study shows that It is an added advantage to assimilate CO mixing ratios alongside CO<sub>2</sub> to increase the accuracy of anthropogenic carbon estimates.</p>

2017 ◽  
Author(s):  
Alecia Nickless ◽  
Peter J. Rayner ◽  
Francois Engelbrecht ◽  
Ernst-Günther Brunke ◽  
Birgit Erni ◽  
...  

Abstract. The results of a high resolution Bayesian inversion over the City of Cape Town, South Africa, are presented, which used observations of atmospheric carbon dioxide from sites at Robben Island and Hangklip lighthouses collected over a sixteen month period from March 2012 until June 2013. A Lagrangian particle dispersion model driven by the regional climate model Conformal Cubic Atmospheric Model (CCAM) was used to provide the sensitivities of the observations to the surface sources and boundary concentrations. This regional climate model was dynamically coupled to the CABLE (Community Atmosphere Biosphere Land Exchange) model, which provided prior estimates of the biogenic fluxes. Prior estimates of the fossil fuel emissions were obtained from an inventory analysis specifically carried out for this inversion exercise, making use of vehicle count data, population census data, fuel usage at industrial point sources, and aviation and shipping vessel counts. The inversion solved for the actual concentration measurements at each site, which was made possible by the use of the Cape Point background site to provide information on the boundaries, and was necessary due to the effect of topography on the atmospheric transport, affecting particularly the sensitivity of the Robben Island site to the surface fluxes. Night-time observations were included, but allocated much larger errors compared to the daytime observations. The inversion was able to substantially improve the agreement between the modelled and observed concentrations, and able to better represent the diurnal cycle in the concentrations compared with the prior modelled concentrations. The mean bias in the modelled concentrations was reduced from −2.9 ppm, with interquartile range −9.1 to 3.7, for the prior modelled concentrations, to 0.5, with interquartile range −1.5 to 1.5, for the posterior modelled concentrations at Robben Island, and from a bias of 2.4 ppm in the prior modelled concentrations at the Hangklip site, with interquartile range −2.3 to 6.5, to a bias of 0.04, with interquartile range −1.1 to 0.8. The standard deviations of the posterior residuals at both sites were reduced to values below that of the observed concentrations. The inversion solved for working week and weekend fossil fuel emissions, and weekly biogenic fluxes, each split into day and night contributions, for each month; therefore six surface sources per week within each of the 10,201 surface pixels. The inversion was also allowed to solve for each of the four boundary concentrations (north, east, south and west), but these were provided with tight constraints provided by the background site. The inversion tended to reduce fossil fuel emissions over all months. During the warmer, drier months, the inversion increased the biogenic fluxes, but reduced the biogenic emissions during the cooler, wetter months. The uncertainty reduction in the total estimate for the domain over each month ranged between 8.6 to 40.0% for the biogenic fluxes and between 0.4 to 16.4% for the fossil fuel fluxes. Model assessment by means of the Chi squared statistic indicated that the mean statistic was 1.48 over all months, indicating that either the prior values for the model errors or the uncertainty in the fluxes was not specified high enough for some months. A companion paper on sensitivity analyses will address different options for the specification of the correlations between errors in the modelled concentrations, how these prior errors are determined, how correlations are determined between the prior fluxes, and how the state vector is specified. Greater confidence is given to the inversion's ability to correct the total flux within each pixel, rather than the individual flux estimates.


Radiocarbon ◽  
2010 ◽  
Vol 52 (2) ◽  
pp. 835-845 ◽  
Author(s):  
M Molnár ◽  
L Haszpra ◽  
É Svingor ◽  
I Major ◽  
I Svetlik

A high-precision atmospheric CO2 monitoring station was developed as a field unit. Within this, an integrating CO2 sampling system was applied to collect samples for radiocarbon measurements. One sampler was installed in the second largest city of Hungary (Debrecen station) and 2 independent 14CO2 sampling lines were installed ∼300 km from Debrecen in a rural site at Hegyhátsál station as independent background references, where high-precision atmospheric CO2 mixing ratios have been measured since 1994. Fossil fuel CO2 content in the air of the large Hungarian city of Debrecen was determined during the winter of 2008 using both the measurements of CO2 mixing ratio and 14C content of air. Fossil fuel CO2 was significantly enhanced at Debrecen relative to the clean-air site at Hegyhátsál.


2020 ◽  
Author(s):  
Saqr Munassar ◽  
Christoph Gerbig ◽  
Frank-Thomas Koch ◽  
Christian Rödenbeck

<p>Regional flux estimates over Europe have been calculated using the two-step inverse system of the Jena CarboScope Regional inversion (CSR) to estimate the annual CO<sub>2</sub> budgets for recent years, in cooperation with the research project VERIFY. The CSR system assimilates observational datasets of CO<sub>2</sub> mixing ratio provided by the Integrated Carbon Observation System (ICOS) across the European domain to optimize Net Ecosystem Exchange (NEE) fluxes computed from biosphere models at a spatial resolution of 0.25 degree. Ocean fluxes are assumed to be constant over time. Fossil fuel emissions are obtained from EDGAR_v4.3 and updated based on British Petroleum (BP) statistics. Therefore, only biosphere-atmosphere exchange fluxes are considered to be optimized against the atmospheric data.</p><p>In this study we focus on the impact of using a-priori fluxes from different biosphere and ocean models on the annual CO<sub>2</sub> budget of posterior fluxes. Results calculated using the Vegetation and Photosynthesis Respiration Model (VPRM) and Simple Biosphere/Carnegie-Ames Stanford Approach (SiBCASA) models show a consistent posterior interannual variability, largely independent of which prior fluxes are used, even though those prior fluxes show considerable differences on annual scales.</p>


2014 ◽  
Vol 14 (3) ◽  
pp. 1663-1677 ◽  
Author(s):  
Y. Tohjima ◽  
M. Kubo ◽  
C. Minejima ◽  
H. Mukai ◽  
H. Tanimoto ◽  
...  

Abstract. In situ observation of the atmospheric CO2, CH4, and CO mixing ratios at Hateruma Island (HAT, 24.05° N, 123.80° E) often show synoptic-scale variations with correlative elevations during winter, associated with air transport from the East Asian countries. We examine winter (November– March) trends in ΔCH4 / ΔCO2, ΔCO / ΔCO2, and ΔCO / ΔCH4 observed at Hateruma over the period 1999 to 2010. To investigate the relationship between the East Asian emissions and the short-term variations in the atmospheric mixing ratios, we use the FLEXPART Lagrangian particle dispersion model (LPDM). The observed ratios ΔCH4 / ΔCO2 and ΔCO / ΔCO2 both show an overall gradual decrease over the study period due to a recent rapid increase in fossil fuel consumption in China. We note, however, that the decreasing rates of ΔCH4 / ΔCO2 and ΔCO / ΔCO2 show gradual decrease and increase, respectively, during the entire observation periods used in this study. The ΔCO / ΔCH4 slope, on the other hand, shows an increasing trend during 1999–2004 but a decrease during 2005–2010. Calculation of the concentration footprint for the atmospheric observation at HAT by using the FLEXPART LPDM indicates that most of the short-term variations are caused by emission variations from northern and eastern China. Combined with a set of reported emission maps, we have estimated the temporal changes in the annual CH4 and CO emissions from China under the assumption that the estimate of the fossil-fuel-derived CO2 emissions based on the energy statistics are accurate. The estimated annual CH4 emissions, corresponding to nonseasonal sources or anthropogenic sources without rice fields, show a nearly constant value of 39 ± 7 TgCH4 yr−1 during 1998–2002, and then gradually increase to 46 ± 8 TgCH4 yr−1 in 2009/2010. The estimated annual CO emissions increase from 134 ± 32 TgCO yr−1 in 1998/1999 to 182 ± 42 TgCO yr−1 in 2004/2005, level off after 2005, and then slightly decrease to less than 160 TgCO yr−1 in 2008–2010.


2008 ◽  
Vol 19 (08) ◽  
pp. 585-594 ◽  
Author(s):  
Jace Wolfe ◽  
Erin C. Schafer

Background: Use of personal frequency modulated (FM) systems significantly improves speech recognition in noise for users of cochlear implants (CI). There are, however, a number of adjustable parameters of the cochlear implant and FM receiver that may affect performance and benefit, and there is limited evidence to guide audiologists in optimizing these parameters. Purpose: This study examined the effect of two sound processor audio-mixing ratios (30/70 and 50/50) on speech recognition and functional benefit for adults with CIs using the Advanced Bionics Auria® sound processors. Research Design: Fully-repeated repeated measures experimental design. Each subject participated in every speech-recognition condition in the study, and qualitative data was collected with subject questionnaires. Study Sample: Twelve adults using Advanced Bionics Auria sound processors. Participants had greater than 20% correct speech recognition on consonant-nucleus-consonant (CNC) monosyllabic words in quiet and had used their CIs for at least six months. Intervention: Performance was assessed at two audio-mixing ratios (30/70 and 50/50). For the 50/50 mixing ratio, equal emphasis is placed on the signals from the sound processor and the FM system. For the 30/70 mixing ratio, the signal from the microphone of the sound processor is attenuated by 10 dB. Data Collection and Analysis: Speech recognition was assessed at two audio-mixing ratios (30/70 and 50/50) in quiet (35 and 50 dB HL) and in noise (+5 signal-to-noise ratio) with and without the personal FM system. After two weeks of using each audio-mixing ratio, the participants completed subjective questionnaires. Results: Study results suggested that use of a personal FM system resulted in significant improvements in speech recognition in quiet at low-presentation levels, speech recognition in noise, and perceived benefit in noise. Use of the 30/70 mixing ratio resulted in significantly poorer speech recognition for low-level speech that was not directed to the FM transmitter. There was no significant difference in speech recognition in noise or functional benefit between the two audio-mixing ratios. Conclusions: Use of a 50/50 audio-mixing ratio is recommended for optimal performance with an FM system in quiet and noisy listening situations.


2013 ◽  
Vol 13 (8) ◽  
pp. 22893-22930 ◽  
Author(s):  
Y. Tohjima ◽  
M. Kubo ◽  
C. Minejima ◽  
H. Mukai ◽  
H. Tanimoto ◽  
...  

Abstract. In-situ observation of the atmospheric CO2, CH4, and CO mixing ratios at Hateruma Island (HAT, 24.05° N, 123.80° E) often show synoptic-scale variations with correlative elevations during winter, associated with air transport from the East Asian countries. We examine winter (November–March) trends in ΔCH4 / ΔCO2, ΔCO / ΔCO2, and ΔCO / ΔCH4 observed at Hateruma over the period 1999 to 2010. Although the ratios ΔCH4 / ΔCO2 and ΔCO / ΔCO2 both show an overall gradual decrease over the study period due to a recent rapid increase in fossil fuel consumption in China, we note that ΔCH4 / ΔCO2 and ΔCO / ΔCO2 remains relatively flat (no trend) during 2005–2010 and 1999–2004, respectively. The CO/CH4 slope on the other hand shows an increasing trend during 1999–2004 but a decrease during 2005–2010. Calculation of the concentration footprint for the atmospheric observation at HAT by using the FLEXPART Lagrangian particle dispersion model indicates that most of the short-term variations are caused by emission variations from North and East China. Combined with a set of reported emission maps, we have estimated the temporal changes in the annual CH4 and CO emissions from China under the assumption that the estimate of the fossil fuel-derived CO2 emissions based on the energy statistics is accurate. The estimated annual CH4 emissions, corresponding to non-seasonal sources or anthropogenic sources without rice fields, show a nearly constant value of 39 ± 6 TgCH4 yr−1 during 1998–2002, and then gradually increases to 46 ± 7 TgCH4 yr−1 in 2009/2010. The estimated annual CO emissions increase from 134 ± 26 TgCO yr−1 in 1998/1999 to 182 ± 33 TgCO yr−1 in 2004/2005, level off after 2005, and then slightly decrease to less than 160 TgCO yr−1 in 2008–2010.


2015 ◽  
Vol 112 (31) ◽  
pp. 9542-9545 ◽  
Author(s):  
Heather D. Graven

Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon (14C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio 14C/C in atmospheric CO2 (Δ14CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ14CO2 because fossil fuels have lost all 14C from radioactive decay. Simulations of Δ14CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ14CO2 near the preindustrial level of 0‰ through 2100, whereas “business-as-usual” emissions will reduce Δ14CO2 to −250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial “aging” of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old.


2012 ◽  
Vol 12 (5) ◽  
pp. 2713-2723 ◽  
Author(s):  
C. Minejima ◽  
M. Kubo ◽  
Y. Tohjima ◽  
H. Yamagishi ◽  
Y. Koyama ◽  
...  

Abstract. Pollution events extracted from the in situ observations of atmospheric CO2 and O2 mixing ratios at Hateruma Island (HAT, 24° N, 124° E) during the period from October 2006 and December 2008 are examined. The air mass origins for the pollution events are categorized by using back trajectory analysis, and the oxidative ratios (OR = −O2:CO2 molar exchange ratio) for selected pollution events are calculated. We find that there is a significant difference in the average oxidative ratios between events from China (OR = 1.14 ± 0.12, n = 25) and Japan/Korea (OR = 1.37 ± 0.15, n = 16). These values are in a good agreement with the national average oxidative ratios for the emissions from fossil fuel burning and cement production (FFBC) in China (ORFFBC = 1.11 ± 0.03) and Korea/Japan (ORFFBC = 1.36 ± 0.02). Compared with the observation, simulations of the atmospheric O2 and CO2 mixing ratios using Lagrangian particle dispersion models do a good job in reconstructing the average oxidative ratio of the pollution events originating in China but tend to underestimate for events originating in Japan/Korea. A sensitivity test suggests that the simulated atmospheric oxidative ratios at HAT are especially sensitive to changes in Chinese fuel mix.


Author(s):  
Haider Elbasher ◽  
Ahmed Ibrahim

In this study, special treatment was applied to two production batches of single-base propellant to correct three of the most important properties in the final product. These properties are internal and external volatile content (IV%, EV% respectively) and chamber pressure, the special treatments depend on mixing two batches with different percentages of mixing starting with sieving and ended with blending to guarantee the homogeneity of the final batch. The batches under study (A and B), batch A with (IV% 0.53%) which must be not less than 0.6%, so it deviated from standard requirement and Bach B with (IV =0.88%), the treatment applied for these batches to generate (C and D) batches. Batch C was a mixture composed of (25% of batch A and 0.75% of batch B). batch D was a mixture composed of (50%batchA and 50% of batch B). Six samples were subjected to sieving and blending according to calculations to correct internal and external volatile content and chamber pressure. For all samples lab, ballistics test, and executive calculations were done. After the test observed that no significant difference between the test and the results of calculations for all samples with different mixing ratios either volatiles content or chamber pressure so according to the result achieved the procedure (Method) was dependable for correcting the deviation of volatiles content and chamber pressure. The selectivity of the optimum mixing ratio can be controlled by using the equation used in this study. The importance of this study in reducing material losses due to the non-conformity of the final product with the specification.


2021 ◽  
Vol 13 (10) ◽  
pp. 1877
Author(s):  
Ukkyo Jeong ◽  
Hyunkee Hong

Since April 2018, the TROPOspheric Monitoring Instrument (TROPOMI) has provided data on tropospheric NO2 column concentrations (CTROPOMI) with unprecedented spatial resolution. This study aims to assess the capability of TROPOMI to acquire high spatial resolution data regarding surface NO2 mixing ratios. In general, the instrument effectively detected major and moderate sources of NO2 over South Korea with a clear weekday–weekend distinction. We compared the CTROPOMI with surface NO2 mixing ratio measurements from an extensive ground-based network over South Korea operated by the Korean Ministry of Environment (SKME; more than 570 sites), for 2019. Spatiotemporally collocated CTROPOMI and SKME showed a moderate correlation (correlation coefficient, r = 0.67), whereas their annual mean values at each site showed a higher correlation (r = 0.84). The CTROPOMI and SKME were well correlated around the Seoul metropolitan area, where significant amounts of NO2 prevailed throughout the year, whereas they showed lower correlation at rural sites. We converted the tropospheric NO2 from TROPOMI to the surface mixing ratio (STROPOMI) using the EAC4 (ECMWF Atmospheric Composition Reanalysis 4) profile shape, for quantitative comparison with the SKME. The estimated STROPOMI generally underestimated the in-situ value obtained, SKME (slope = 0.64), as reported in previous studies.


Sign in / Sign up

Export Citation Format

Share Document