Temperature and flow conditions of quartz-sand injections at the base of the Esla Nappe (Cantabrian Zone, NW Iberia)

Author(s):  
Manuel Ignacio de Paz Álvarez ◽  
Sergio Llana-Fúnez ◽  
Stefano M. Bernasconi ◽  
Juan Luis Alonso ◽  
Heather M. Stoll

<p>The Esla Nappe is located in the foreland and thrust belt of the Variscan Orogen (Cantabrian Zone, NW Iberia). It is formed by a near-complete Palaeozoic sedimentary succession. With a displacement of around 19 km, the nappe was emplaced along a thin (<2–3 m) basal shear zone (ENSZ) at a minimum depth of 4 km during the Moscovian (ca. 312 Ma). Fault-rock assemblages record a variety of alternating deformation mechanisms and processes, including cataclastic flow, pressure solution and hydrofracturing and vein precipitation.</p><p>Following emplacement, the ENSZ was breached by clastic dykes and sills injected within re-opened previous anisotropies such as bedding planes, thrust surfaces, joints and stylolites. Together, they constitute an interconnected network of quartz sand-rich lithosomes that reach structural heights in excess of 20 m above the ENSZ. The orientation of the dykes suggests that the injection process took place under low differential stress conditions in the hangingwall and near-lithostatic fluid pressure conditions in the footwall. The injected slurry consisted of overpressured pore fluid, quartz-sand grains derived from the footwall and entrained host-rock fragments. The temperature of the fluids estimated from the clumped isotope composition of calcite cements is 71–86 °C, with an average of 80 ± 4 °C. The calcite isotopic composition (δ<sup>13</sup>C = -0.15, δ<sup>18</sup>O = -9.53, both VPDB) is well within the typical values of the host Láncara Fm., which suggests that the fluids achieved equilibrium with the host prior to calcite precipitation. Using this calculated temperature and depth estimates for the base of the Esla Nappe, the geothermal gradient during deformation is estimated to be in the order of 16–24 °C/km, a relatively low value.</p><p>Flow conditions within the injections have been inferred from properties such as the particle drag coefficient, morphology, diameter and concentration, and the fluid density and viscosity, necessary for the calculation of the terminal fall velocity of the particle array. Thin injections formed of pure quartz, with a thickness <1 cm, are consistent with flow velocities of 0.01–0.35 m/s and a laminar flow (Reynolds number (Re) <800). Thicker pure quartz injections (<10 cm), on the other hand, required faster flow velocities (0.35 m/s) and transitional to turbulent flows (800 < Re < 8000). The thicker injections (≈1 m) that entrained larger host-derived fragments would require transitional to turbulent flows (1200 < Re < 1.2×10<sup>4</sup>) at fast velocities (0.35 m/s).</p><p>The estimated geothermal gradient is consistent with the lower estimations for current foreland basins, and very similar to ocean trenches. The velocities and Reynolds numbers derived for the Esla Nappe are larger than usually estimated for deep seated injections without hydraulic connection with the surface, where the vertical pressure gradient driving them is limited. In those cases, laminar flow conditions are usually invoked, but our results suggest that turbulent flow is possible in the thicker injections. Nonetheless, the values are lower than those reported for shallow injections in connection with the surface.</p>

2020 ◽  
Author(s):  
Manuel Ignacio de Paz Álvarez ◽  
Sergio Llana Fúnez ◽  
Juan Luis Alonso

<p>The Esla Nappe is located in the external foreland and thrust belt of the Variscan Orogen in the NW Iberian Massif (Cantabrian Zone, NW Iberia). It is formed by a near-complete Palaeozoic sedimentary succession. With a displacement of around 19 km, the nappe was emplaced along a thin (<2–3 m) basal shear zone (ENBSZ) located at an estimated minimum depth of 4 km. Emplacement took place during the Moscovian (ca. 312 Ma). Fault-rock assemblages record a variety of alternating deformation mechanisms and processes, including cataclastic flow,  pressure solution and hydrofracturing and vein precipitation. All these processes are considered evidence of an aseismic stable behaviour of the ENBSZ, where deformation was influenced by secular variations in the fluid pore pressure.</p><p>Following emplacement, the ENBSZ was breached by clastic dykes and sills which were intruded following re-opened previous anisotropies, including bedding planes, thrust surfaces, joints and stylolites. Together, they constitute an interconnected network of quartz sand-rich lithosomes reaching structural heights occasionally exceeding 20 m above the ENBSZ. The orientation of the dykes suggests that the injection process took place under low differential stress conditions in the hangingwall, and near-lithostatic fluid pore overpressure conditions in the footwall. The injected slurry consisted of overpressured pore fluid, quartz-sand grains derived from the footwall and entrained host-derived fragments. Depending on fracture aperture and slurry composition, a variety of fluid velocities can be inferred in the order of 15–30 cm/s. Thin pure injections of quartz grains (ca. <1 cm) were characterised by a laminar flow (Re<2100), whereas the thickest quartz and host-derived mixed injections (~1 m) displayed a fully turbulent flow (Re~2 x 10<sup>4</sup>).</p><p>The causes for the fluids to reach near-lithostatic fluid overpressures within the uppermost footwall remain unknown. It is not possible to rule out a seismic trigger, but the absence of extreme shear localization structures typical of seismic slip suggests that the injection process was driven by fluid progressive accumulation, possibly related with clay dehydration reactions, tectonic loading, pore compaction or fluid migration from underlying formations. Actual breaching and injection may have been allowed by a decrease in bedding-parallel compressive stresses in the Esla Nappe associated with the subsequent evolution of the thrust-wedge.</p>


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tobias Blanke ◽  
Markus Hagenkamp ◽  
Bernd Döring ◽  
Joachim Göttsche ◽  
Vitali Reger ◽  
...  

AbstractPrevious studies optimized the dimensions of coaxial heat exchangers using constant mass flow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar flow types. In contrast, in this study, flow conditions in the circular ring are kept constant (a set of fixed Reynolds numbers) during optimization. This approach ensures fixed flow conditions and prevents inappropriately high or low mass flow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic effort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass flow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellström’s borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefficients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy difference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy flux and hydraulic effort. The Reynolds number in the circular ring is instead of the mass flow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54% of the outer pipe radius for laminar flow and 60% for turbulent flow scenarios. Net-exergetic optimization shows a predominant influence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth’s thermal properties and the flow type. Conclusively, coaxial geothermal probes’ design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics.


2005 ◽  
Vol 52 (7) ◽  
pp. 77-84 ◽  
Author(s):  
L.F. Melo

The paper proposes tortuosity as a physical concept particularly useful to interpret internal diffusivities in terms of biofilm structure. Results from different authors are presented showing how average effective diffusivities in biofilms (measured with inert tracers) vary with the fluid velocity: in the case of biofilms formed under turbulent flow conditions, an increase in fluid velocity corresponds to a decrease in the diffusivity, although sometimes this decrease is very slight; however, in laminar flow situations, no common trend is found from research group to research group.


2009 ◽  
Vol 630 ◽  
pp. 1-4 ◽  
Author(s):  
IVAN MARUSIC

Turbulent flows near walls have been the focus of intense study since their first description by Ludwig Prandtl over 100 years ago. They are critical in determining the drag and lift of an aircraft wing for example. Key challenges are to understand the physical mechanisms causing the transition from smooth, laminar flow to turbulent flow and how the turbulence is then maintained. Recent direct numerical simulations have contributed significantly towards this understanding.


1997 ◽  
Vol 86 (10) ◽  
pp. 1132-1137 ◽  
Author(s):  
Venkatramana M. Rao ◽  
Mengfen Lin ◽  
Cynthia K. Larive ◽  
Marylee Z. Southard

2021 ◽  
Author(s):  
Jorge Acevedo ◽  
Gabriela Fernández-Viejo ◽  
Sergio Llana-Fúnez ◽  
Carlos López-Fernández ◽  
Javier Olona ◽  
...  

Abstract. The cross-correlation of ambient noise records registered by seismic networks has proven to be a valuable tool to obtain new insights into the crustal structure at different scales. Based on 2- to 14-s-period Rayleigh and Love dispersion data extracted from the seismic ambient noise recorded by 20 three-component broadband stations belonging to two different temporary experiments, we present the first i) upper crustal (1–14 km) high-resolution shear wave velocity and ii) radial anisotropy variation models of the continental crust in NW Iberia. The area of study represents one of the best exposed cross-sections along the Variscan orogen of western Europe, showing the transition between the external eastern zones towards the internal areas in the west. Both the 2-D maps and an E-W transect reveal a close correspondence with the main geological domains of the Variscan orogen. The foreland-fold and thrust-belt of the orogen, the Cantabrian Zone, is revealed by a zone of relatively low shear wave velocities (2.3–3.0 km/s), while the internal zones generally display higher homogeneous velocities (> 3.1 km/s). The boundary between both zones is clearly delineated in the models, depicting the arcuate shape of the orogen grain. The velocity patterns also reveal variations of the bulk properties of the rocks that can be linked to major Variscan structures, such as the basal detachment of the Cantabrian Zone or the stack of nappes involving pre-Variscan basement; or sedimentary features such as the presence of thick syn-orogenic siliciclastic wedges. Overall, the radial anisotropy magnitude varies between −5 and 15 % and increases with depth. The depth pattern suggests that the alignment of cracks is the main source of anisotropy at < 8 km depths, although the intrinsic anisotropy seems to be significant in the West-Asturian Leonese Zone, the low-grade slate belt adjacent to the Cantabrian Zone. At depths > 8 km, widespread high and positive radial anisotropies are observed, caused by the presence of subhorizontal alignments of grains and minerals in relation to the internal deformation of rocks either during the Variscan orogeny or prior to it.


2003 ◽  
Vol 185 (18) ◽  
pp. 5632-5638 ◽  
Author(s):  
Konstantin Agladze ◽  
Debra Jackson ◽  
Tony Romeo

ABSTRACT The complex architecture of bacterial biofilms inevitably raises the question of their design. Microstructure of developing Escherichia coli biofilms was analyzed under static and laminar flow conditions. Cell attachment during early biofilm formation exhibited periodic density patterns that persisted during development. Several models for the origination of biofilm microstructure are considered, including an activator-inhibitor or Turing model.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Sindy Giebe ◽  
Coy Brunssen ◽  
Melanie Brux ◽  
Natalia Cockcroft ◽  
Katherine Hewitt ◽  
...  

Endothelial dysfunction is one of the first steps in the development of atherosclerosis. This proinflammatory phenotype is associated with decreased bioavailability of nitric oxide and a corresponding expression profile in the endothelial cells. Tobacco smoking promotes development of atherosclerotic plaques and local hemodynamic forces are key stimuli in this process. Low laminar flow is involved in the development of an unstable plaque phenotype, while high laminar flow has atheroprotective role. The molecular mechanisms controlling plaque stability in response to tobacco smoking remain largely unknown so far. Therefore, we exposed human endothelial cells to cigarette smoke extract (CSEaq) under disturbed flow conditions. Primary human endothelial cells were stimulated with increasing dosages of CSEaq for 24h. Cell viability was reduced by CSEaq in a dose-dependent manner. The impact of specific flow conditions and different doses of CSEaq on the expression of atherosclerosis-related genes was investigated using a cone-and-plate viscometer. High laminar flow induced elongation of endothelial cells in the direction of flow, increased eNOS expression and NO release in a time-dependent manner. This increase was inhibited by CSEaq. Low laminar flow showed no effect on eNOS expression and NO release. The NRF2 antioxidative defense system was also induced by high laminar flow. NRF2 and NRF2 target genes HMOX1 and NQO1 were strongly activated by CSEaq. Furthermore, we monitored the expression of proinflammatory genes. CSEaq strongly induced adhesion molecule ICAM-1. Interestingly, VCAM-1 was unaffected by CSEaq. Induction of endothelial NADPH oxidase isoform 4 by CSEaq was prevented by high laminar flow. Catalase expression was not affected by flow and CSEaq, whereas CSEaq transiently increased SOD1 expression. Endothelial wound healing was improved by atheroprotective high laminar flow. Low flow did not affect wound healing. Furthermore, high laminar flow decreased adhesion of monocytes to endothelial cells, compared to low flow. We suggest novel molecular mechanisms how tobacco smoking promotes the development of endothelial dysfunction. This can contribute to the formation of an unstable atherosclerotic plaque phenotype.


Sign in / Sign up

Export Citation Format

Share Document