Ecosystem services in coastal wetlands: Investigating bio- and hydro-mechanical traits of salt marsh vegetation

Author(s):  
Kara Keimer ◽  
Charlotte Steinigeweg ◽  
Viktoria Kosmalla ◽  
Oliver Lojek ◽  
David Schürenkamp ◽  
...  

<p>Biodiversity and nature conservation play an increasingly important role with growing societal awareness, which is reflected in current European legislative frameworks such as the Marine Strategy Framework Directive or the Water Framework Directive, calling for integrative solutions and restoration of good environmental status. Salt marshes provide ecosystem services which can help mitigate climate change and sea level rise threats and simultaneously address coastal squeeze problems. The periodical submergence due to tidal changes creates a special ecosystem with different zones delineated by a landward increasing marsh elevation, which are inhabited by different plant and animal communities. In addition to their ecological value, salt marshes provide coastal protection, as they dissipate wave energy and stabilize otherwise exposed coastal soil lining sea dikes.  </p><p>The "Gute Küste Niedersachsen" research project investigates which environmental properties account for livable and safe coastal conditions along temperate climate coastlines, focusing on the symbiosis of human settlements, nature conservation and sustainable coastal protection. Specifically, the identification of vegetation-mediated ecosystem services within salt marshes at the North Sea coast of Lower Saxony, Germany is addressed here. The overarching goal of the transdisciplinary project is to gain knowledge of natural or nature-based systems and their processes within real-world laboratories at the coast to incorporate proven ecosystem services into standardized coastal protection design guidelines and promote integrated coastal zone management.</p><p>Methods include field observations and experiments, hydraulic laboratory experiments and numerical simulations over the course of 5 years. During the first years, a systematic observation of vegetation regarding distribution patterns, growth, density, and bio-mechanical (e.g. flexural rigidity, area moment of inertia) as well as root properties (e.g. root length density, tensile strength) and their respective seasonality is conducted. Through comprehensive monitoring covering large areas of halophytic meadows, a physical model of heterogeneous salt marshes will be developed. Simultaneous measurements of environmental parameters covering waves, currents and soil properties yield a comprehensive data set for analysis, numerical and analytical modeling purposes. </p><p>Hydraulic experiments modeling the wave-vegetation-soil interaction will be devised based on field data, developing dynamically and geometrically scaled vegetation surrogates. Besides vegetation properties aboveground, a focus will be on previously sparsely considered root system effects that is hypothesized to govern erosional processes in salt marshes.</p>

Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 680
Author(s):  
Janine B. Adams ◽  
Jacqueline L. Raw ◽  
Taryn Riddin ◽  
Johan Wasserman ◽  
Lara Van Niekerk

Restoration of salt marsh is urgent, as these ecosystems provide natural coastal protection from sea-level rise impacts, contribute towards climate change mitigation, and provide multiple ecosystem services including supporting livelihoods. This study identified potential restoration sites for intervention where agricultural and degraded land could be returned to salt marsh at a national scale in South African estuaries. Overall, successful restoration of salt marsh in some estuaries will require addressing additional pressures such as freshwater inflow reduction and deterioration of water quality. Here, we present, a socio-ecological systems framework for salt marsh restoration that links salt marsh state and the well-being of people to guide meaningful and implementable management and restoration interventions. The framework is applied to a case study at the Swartkops Estuary where the primary restoration intervention intends to route stormwater run-off to abandoned salt works to re-create aquatic habitat for waterbirds, enhance carbon storage, and provide nutrient filtration. As the framework is generalized, while still allowing for site-specific pressures to be captured, there is potential for it to be applied at the national scale, with the largest degraded salt marsh areas set as priorities for such an initiative. It is estimated that ~1970 ha of salt marsh can be restored in this way, and this represents a 14% increase in the habitat cover for the country. Innovative approaches to restoring and improving condition are necessary for conserving salt marshes and the benefits they provide to society.


2021 ◽  
Vol 211 ◽  
pp. 104101
Author(s):  
Ana Paula Portela ◽  
Cristiana Vieira ◽  
Cláudia Carvalho-Santos ◽  
João Gonçalves ◽  
Isabelle Durance ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2060
Author(s):  
Elvira Buonocore ◽  
Umberto Grande ◽  
Pier Paolo Franzese ◽  
Giovanni F. Russo

The biotic and abiotic assets of the marine environment form the “marine natural capital” embedded in the global ocean. Marine natural capital provides the flow of “marine ecosystem services” that are directly used or enjoyed by people providing benefits to human well-being. They include provisioning services (e.g., food), regulation and maintenance services (e.g., carbon sequestration and storage, and coastal protection), and cultural services (e.g., tourism and recreational benefits). In recent decades, human activities have increased the pressures on marine ecosystems, often leading to ecosystem degradation and biodiversity loss and, in turn, affecting their ability to provide benefits to humans. Therefore, effective management strategies are crucial to the conservation of healthy and diverse marine ecosystems and to ensuring their long-term generation of goods and services. Biophysical, economic, and sociocultural assessments of marine ecosystem services are much needed to convey the importance of natural resources to managers and policy makers supporting the development and implementation of policies oriented for the sustainable management of marine resources. In addition, the accounting of marine ecosystem service values can be usefully complemented by their mapping to enable the identification of priority areas and management strategies and to facilitate science–policy dialogue. Given this premise, this study aims to review trends and evolution in the concept of marine ecosystem services. In particular, the global scientific literature on marine ecosystem services is explored by focusing on the following main aspects: the definition and classification of marine ecosystem services; their loss due to anthropogenic pressures, alternative assessment, and mapping approaches; and the inclusion of marine ecosystem services into policy and decision-making processes.


Land ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 101 ◽  
Author(s):  
Janis Arnold ◽  
Janina Kleemann ◽  
Christine Fürst

Urban ecosystem services (ES) contribute to the compensation of negative effects caused by cities by means of, for example, reducing air pollution and providing cooling effects during the summer time. In this study, an approach is described that combines the regional biotope and land use data set, hemeroby and the accessibility of open space in order to assess the provision of urban ES. Hemeroby expresses the degree of naturalness of land use types and, therefore, provides a differentiated assessment of urban ES. Assessment of the local capacity to provide urban ES was conducted with a spatially explicit modeling approach in the city of Halle (Saale) in Germany. The following urban ES were assessed: (a) global climate regulation, (b) local climate regulation, (c) air pollution control, (d) water cycle regulation, (e) food production, (f) nature experience and (g) leisure activities. We identified areas with high and low capacity of ES in the urban context. For instance, the central parts of Halle had very low or no capacity to provide ES due to highly compact building styles and soil sealing. In contrast, peri-urban areas had particularly high capacities. The potential provision of regulating services was spatially limited due to the location of land use types that provide these services.


2020 ◽  
Vol 20 (suppl 1) ◽  
Author(s):  
Andrés Sánchez-Quinto ◽  
Julliet Correa da Costa ◽  
Nadia S. Zamboni ◽  
Fábio H. C. Sanches ◽  
Silas C. Principe ◽  
...  

Abstract: Coral reefs and mangroves support rich biodiversity and provide ecosystem services that range from food, recreational benefits and coastal protection services, among others. They are one of the most threatened ecosystems by urbanization processes. In this context, we developed a conceptual framework for the management of biodiversity and ecosystem services for these coastal environments. We based our workflow on two sections: “Information base” and “Governance” and use the Puerto Morelos Coastal region as a case study for coastal protection. Puerto Morelos is between two of the most touristic destinations of Mexico (Playa del Carmen and Cancun) that has experienced an increase of population in the past four decades resulting in an intensification of multiple threats to its ecosystems. We characterized the two ecosystems with a “Management Units” strategy. An expert-based ecosystem services matrix was also described in order to connect mangroves and coral reef ecosystems with the multiple beneficiaries. Then an ecosystem model (conceptual model and Global Biodiversity model) was developed. The conceptual model was useful in understanding the interplay processes between systems regarding the ecosystem service of “Coastal Protection”. The Global Biodiversity model evidenced the human-induced shifts in the biodiversity for mangrove and coral reefs ecosystems. Also, a projection for 2035 of “best” and “worst” scenarios was applied using GLOBIO3. A DPSIR conceptual framework was used to analyze environmental problems regarding ecosystem services maintenance. Finally, we evaluated a set of policies associated with these ecosystems that favor coastal protection integrity. This framework facilitates the identification of the most relevant processes and controls about the provision of coastal protection service. It can also be useful to better target management actions and as a tool to identify future management needs to tackle the challenges preventing more effective conservation of coastal environments.


Author(s):  
Thomas J van Veelen ◽  
Harshinie Karunarathna ◽  
William G Bennett ◽  
Tom P Fairchild ◽  
Dominic E Reeve

The ability of coastal vegetation to attenuate waves has been well established (Moller et al., 2014). Salt marshes are vegetated coastal wetlands that can act as nature- based coastal defenses. They exhibit a range of plant species, which have been shown to differ in the amount of wave damping they provide (Mullarney & Henderson, 2018). Recent studies have shown that plant flexibility is a key parameter that controls wave energy dissipation (Paul et al., 2016). Yet, no model exists that includes plant flexibility in computationally efficient manner for large-scale coastal zones. Therefore, we have developed a new model for flexible vegetation based on the key mechanisms in the wave-vegetation interaction and applied it to an estuary with diverse salt marsh vegetation.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/AjnFx3aFSzs


Author(s):  
Marise Barreiros Horta ◽  
Maria Inês Cabral ◽  
Iva Pires ◽  
Laura Salles Bachi ◽  
Ana Luz ◽  
...  

By integrating social, ecological, and economic perspectives, the assessment of ecosystem services (ES) provides valuable information for better targeting landscape planning and governance. This chapter summarizes different participatory approaches for assessing ES in urban areas of three countries. In Belo Horizonte (Brazil), a conceptual framework for the vacant lots ES assessment is presented as an attempt to integrate landscape, social, and political dimensions. In Leipzig (Germany), a combination of site surveys, interviews, and remote sensing provides a valuable data set that fostered a comparative study between two forms of urban gardening. In Lisbon (Portugal), the study is based on interviews that offer a social insight into the horticultural parks situation, which in turn demands a better dialogue with the municipality. In general, the studies demonstrate the potential benefits of utilizing the ES assessment approaches on urban landscapes, especially for better understanding the interactions between people and nature in urban sites.


Drones ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 25
Author(s):  
Antoine Mury ◽  
Antoine Collin ◽  
Thomas Houet ◽  
Emilien Alvarez-Vanhard ◽  
Dorothée James

Offering remarkable biodiversity, coastal salt marshes also provide a wide variety of ecosystem services: cultural services (leisure, tourist amenities), supply services (crop production, pastoralism) and regulation services including carbon sequestration and natural protection against coastal erosion and inundation. The consideration of this coastal protection ecosystem service takes part in a renewed vision of coastal risk management and especially marine flooding, with an emerging focus on “nature-based solutions.” Through this work, using remote-sensing methods, we propose a novel drone-based spatial modeling methodology of the salt marsh hydrodynamic attenuation at very high spatial resolution (VHSR). This indirect modeling is based on in situ measurements of significant wave heights (Hm0) that constitute the ground truth, as well as spectral and topographical predictors from VHSR multispectral drone imagery. By using simple and multiple linear regressions, we identify the contribution of predictors, taken individually, and jointly. The best individual drone-based predictor is the green waveband. Dealing with the addition of individual predictors to the red-green-blue (RGB) model, the highest gain is observed with the red edge waveband, followed by the near-infrared, then the digital surface model. The best full combination is the RGB enhanced by the red edge and the normalized difference vegetation index (coefficient of determination (R2): 0.85, root mean square error (RMSE): 0.20%/m).


Land ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 119 ◽  
Author(s):  
Andreas Scheba

Governments, multilateral organisations, and international conservation NGOs increasingly frame nature conservation in terms that emphasise the importance of technically managing and economically valuing nature, and introducing markets for ecosystem services. New mechanisms, such as REDD+, have been incorporated in national-level policy reforms, and have been piloted and implemented in rural project settings across the Global South. By reflecting on my research on REDD+ implementation in two case study villages in Tanzania, the paper argues that the emergence and nature of market-based conservation are multi-faceted, complex, and more profoundly shaped by structural challenges than is commonly acknowledged. The paper identifies three particularly important challenges: the politics surrounding the establishment of community-based forest management; the mismatch between formal governance institutions and actual practices on the ground; and the fickleness of income from carbon sales and alternative livelihood opportunities. I argue that these challenges are not merely teething troubles, but they question fundamental assumptions of market-based conservation, more generally. I end with reference to better ideas for achieving sustainable development.


Sign in / Sign up

Export Citation Format

Share Document