Effect of soil organic carbon loss on the stability and structure of microaggregates: First insights from an organic carbon depletion field trial in a loess soil

Author(s):  
Svenja Roosch ◽  
Vincent Felde ◽  
Daniel Uteau ◽  
Stephan Peth

<p>Soil microaggregates are considered to play an important role in soil functioning and soil organic carbon (SOC) is of great importance for the formation and stabilization of these aggregates. The loss of SOC can occur, for example, after a change in land use and may lead to a decreased aggregate stability, which makes soils vulnerable to various threats, such as erosion or compaction. It is therefore important to shed light on the effect of SOC loss on aggregate stability in order to better understand and preserve the functioning of healthy soils.</p><p>We sampled two adjacent plots from a loess soil in Selhausen (Germany) and measured aggregate stability and architecture of soil microaggregates. One plot was kept free from vegetation by the application of herbicides and by tillage (to a depth of 5 cm) from 2005 on (organic matter depletion, OMD), while the other plot was used for agriculture using conventional tillage (control). Over the course of 14 years, the SOC concentration in the bulk soil has been reduced from 12.2 to 10.1 g SOC kg-1 soil. It was, however, unclear whether a loss of SOC had also taken place in microaggregates (since they are known to have very long turnover times). We took 10 undisturbed soil cores from two depths of each plot (Ap and Bt horizons).</p><p>The stability of aggregates against hydraulic and mechanical stresses was tested using wet sieving  (mesh sizes of 0.25 to 8 mm) and a crushing test in a load frame adapted to the microaggregate scale. For the latter test, microaggregates were isolated from the bulk soil using a newly developed dry crushing approach. To shed light on the effect of a decreased SOC content on microaggregate structure, we scanned several microaggregates with a computed tomography scanner at sub-micron resolution and analysed the features of their pore systems. SOC losses had also occurred in large  microaggregates (250-53 µm) in the Ap horizon: SOC contents in this fraction were 16.3 g SOC kg⁻¹ (control) and 12.8 g SOC kg⁻¹ (OMD). While wet sieving indicated a lower stability of macroaggregates from the Ap horizon in the OMD plot (geometric mean diameter: 1.54 mm (control) vs 0.43 mm (OMD)), an effect on the tensile strength of large microaggregates could not be found. Total porosity and pore connectivity, derived from Euler characteristic, as well as several pore skeleton traits (number of branches, junctions, etc.) were lower in aggregates from the OMD treatment. However, the difference was also present or even stronger in the Bt horizon than in the Ap horizon, so the supposed treatment effect might have been due to other effects like spatial heterogeneity of texture. Thus, the observed SOC losses may not have been large enough to substantially influence struture or stability of large microaggregates.</p>

2020 ◽  
Author(s):  
Svenja Roosch ◽  
Vincent Felde ◽  
Daniel Uteau ◽  
Stephan Peth

<p>Soil microaggregates are considered to play an important role in soil functioning and soil organic carbon (SOC) is of great importance for the formation and stabilization of these aggregates. The loss of SOC can occur, for example, after a change in land use and may lead to a decreased aggregate stability, which makes soils vulnerable to various threats, such as erosion or compaction. It is therefore important to understand the effect of SOC loss on aggregate stability in order to better understand and preserve the functioning of healthy soils.</p><p>We sampled two adjacent plots from a loess soil in Selhausen (North Rhine-Westphalia, Germany) in November of 2019 and measured aggregate stability and architecture of soil microaggregates. One plot was kept free from vegetation by the application of herbicides and by tillage (to a depth of 5 cm) from 2005 on, while the other plot was used for agriculture (conventional tillage). Over the course of 11 years, the SOC concentration in the bulk soil was reduced from 12.2 to 10.1 g SOC kg<sup>-1</sup> soil. We took 10 undisturbed soil cores from two depths of each plot (Ap and Bt horizons).</p><p>The stability of aggregates against hydraulic and mechanical stresses was tested using the widespread wet sieving approach and a newly developed dry crushing approach. Isolated microaggregates gained from the latter procedure were tested against tensile stress by adapting a crushing test in a load frame to the microaggregate scale. To shed light on the effect of a decreased SOC content on microaggregate structure, we scanned several microaggregates with a high-resolution computed tomography scanner (Zeiss Xradia 520 versa) at sub-micron resolutions and analyzed the features of their pore systems.</p><p>This will give us valuable insights into the interplay of mechanical and physicochemical stability, as well as the structural properties of microaggregates with regard to SOC depletion. The consequences for various soil functions provided by microaggregates, like the habitat function for microorganisms or their capacity to store and transport gas, water and nutrients, are discussed.</p>


2021 ◽  
Author(s):  
Wenhai Mi ◽  
Taotao Zha ◽  
Qiang Gao ◽  
Haitao Zhao

Abstract Soil aggregate stability is one of the important physical properties affecting rice (Oryza sativa L.) production and soil sustainability. This study was undertaken to evaluate the influence of different medium-term fertilization regimes on soil aggregate stability and aggregate associated carbon and nitrogen in rhizosphere and bulk soil. This experiment consisted of three treatments including mineral fertilizer alone (NPK), mineral fertilizer plus rice straw (NPK + RS), and controlled-release blended fertilizer plus cattle manure (CRF + CM). The results showed that bulk soil contained higher mean weight diameter (MWD) than in rhizosphere soil at the rice jointing and maturity stages. Compared to the NPK alone, combined application of NPK with organic amendments improved the proportion of > 0.25 mm macroaggregate, soil organic carbon (SOC), total nitrogen (TN) concentrations, and MWD in both rhizosphere and bulk soil. In rhizosphere, the proportion of macroaggregate was significantly positively (p < 0.01) correlated with root biomass while had no significant correlations with SOC in all sizes aggregates. By contrast, bulk soil had a significantly (p < 0.01) positive relationship between the proportion of > 2 mm class and organic C associated with smaller particle-size aggregates (0.25–2 mm and < 0.25 mm). During the rice-growing season, the highest MWD value was observed at the jointing stage except for the NPK + RS treatment in bulk soil. Overall, the results suggested that the medium-term application of mineral fertilizer with organic amendments is beneficial to improve soil aggregate stability and C and N accumulation.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaodan Sun ◽  
Gang Wang ◽  
Qingxu Ma ◽  
Jiahui Liao ◽  
Dong Wang ◽  
...  

Abstract Background Soil organic carbon (SOC) is important for soil quality and fertility in forest ecosystems. Labile SOC fractions are sensitive to environmental changes, which reflect the impact of short-term internal and external management measures on the soil carbon pool. Organic mulching (OM) alters the soil environment and promotes plant growth. However, little is known about the responses of SOC fractions in rhizosphere or bulk soil to OM in urban forests and its correlation with carbon composition in plants. Methods A one-year field experiment with four treatments (OM at 0, 5, 10, and 20 cm thicknesses) was conducted in a 15-year-old Ligustrum lucidum plantation. Changes in the SOC fractions in the rhizosphere and bulk soil; the carbon content in the plant fine roots, leaves, and organic mulch; and several soil physicochemical properties were measured. The relationships between SOC fractions and the measured variables were analysed. Results The OM treatments had no significant effect on the SOC fractions, except for the dissolved organic carbon (DOC). OM promoted the movement of SOC to deeper soil because of the increased carbon content in fine roots of subsoil. There were significant correlations between DOC and microbial biomass carbon and SOC and easily oxidised organic carbon. The OM had a greater effect on organic carbon fractions in the bulk soil than in the rhizosphere. The thinnest (5 cm) mulching layers showed the most rapid carbon decomposition over time. The time after OM had the greatest effect on the SOC fractions, followed by soil layer. Conclusions The frequent addition of small amounts of organic mulch increased SOC accumulation in the present study. OM is a potential management model to enhance soil organic matter storage for maintaining urban forest productivity.


2021 ◽  
Vol 13 (3) ◽  
pp. 1541
Author(s):  
Xiaolin Shen ◽  
Lili Wang ◽  
Qichen Yang ◽  
Weiming Xiu ◽  
Gang Li ◽  
...  

Our study aimed to provide a scientific basis for an appropriate tillage management of wheat-maize rotation system, which is beneficial to the sustainable development of agriculture in the fluvo-aquic soil areas in China. Four tillage treatments were investigated after maize harvest, including rotary tillage with straw returning (RT), deep ploughing with straw returning (DP), subsoiling with straw returning (SS), and no tillage with straw mulching (NT). We evaluated soil organic carbon (SOC), dissolved organic carbon (DOC), permanganate oxidizable carbon (POXC), microbial biomass carbon (MBC), and particulate organic carbon (POC) in bulk soil and soil aggregates with five particle sizes (>5 mm, 5–2 mm, 2–1 mm, 1–0.25 mm, and <0.25 mm) under different tillage managements. Results showed that compared with RT treatment, NT treatment not only increased soil aggregate stability, but also enhanced SOC, DOC, and POC contents, especially those in large size macroaggregates. DP treatment also showed positive effects on soil aggregate stability and labile carbon fractions (DOC and POXC). Consequently, we suggest that no tillage or deep ploughing, rather than rotary tillage, could be better tillage management considering carbon storage. Meanwhile, we implied that mass fractal dimension (Dm) and POXC could be effective indicators of soil quality, as affected by tillage managements.


2019 ◽  
Vol 37 (3) ◽  
pp. 263-273
Author(s):  
Efraín Francisco Visconti-Moreno ◽  
Ibonne Geaneth Valenzuela-Balcázar

The stability of soil aggregates depends on the organic matter, and the soil use and management can affect the soil organicmatter (SOM) content. Therefore, it is necessary to know therelationship between aggregate stability and the content of SOMin different types of soil use at two different altitudes of theColombian Andes. This study examined the conditions of soilaggregate stability expressed as a distribution of the size classes of stable aggregates (SA) and of the mean weighted diameter of the stable aggregates (MWD). To correlate these characteristics with the soil organic carbon (OC), we measured the particulate organic matter pool (POC), the OC associated with the mineral organic matter pool (HOC), the total organic carbon content (TOC), and the humification rate (HR). Soils were sampled at two altitudes: 1) Humic Dystrudepts in a cold tropical climate (CC) with three plots: tropical mountain rainforest, pastures, and crops; 2) Fluvaquentic Dystrudepts in a warm tropical climate (WC) with three plots: tropical rainforest, an association of oil palm and pastures, and irrigated rice. Soils were sampled at three depths: 0-5, 5-10 and 10-20 cm. The physical properties, mineral particle size distribution, and bulk density were measured. The content of SA with size>2.36 mm was higher in the CC soil (51.48%) than in the WC soil (9.23%). The SA with size 1.18-2.36 mm was also higher in the CC soil (7.78%) than in the WC soil (0.62%). The SA with size 0.60-1.18 mm resulted indifferent. The SA with size between 0.30 and 0.60 mm were higher in the WC soil (13.95%) than in the CC soil (4.67%). The SA<0.30 mm was higher in the WC soil (72.56%) than in the CC soil (32.15%). It was observed that MWD and the SA>2.36 mm increased linearly with a higher POC, but decreased linearly with a higher HR. For the SA<0.30 mm, a linear decrease was observed at a higher POC, while it increased at a higher HR.


2021 ◽  
Vol 17 ◽  
Author(s):  
Alec Mackay ◽  
Ronaldo Eduardo Vibart ◽  
Catherine McKenzie ◽  
Brian Devantier ◽  
Emma Noakes

In 2020 we measured the stability of soil organic carbon (SOC) concentrations and stocks under contrasting hill country pasture regimes, by sampling three slope classes and three aspect locations on each of three farmlets of a long-term phosphorus fertiliser and sheep grazing experiment. The farmlets included no annual phosphorus (NF), 125 kg of single superphosphate/ha (LF), or 375 kg superphosphate/ha (HF) that has been applied on an annual basis since 1980. Results from the 2020 sampling event were added to previous results reported from soil samples collected in 2003 and 2014. The SOC concentrations in the topsoil (0-75 mm depth), ranging from 4.23 to 5.99% across all slopes and aspects of the farmlets, fell within the normal range (≥3.5 and <7.0%) required for sustaining production and environmental goals. A trend was shown for greater SOC stocks in the topsoil in the HF farmlet (34.0 Mg/ ha) compared with the other two farmlets (31.6 Mg/ha), but this trend was not evident in the deeper soil layers (75-150, 150-300, 0-300 mm). Under the current conditions, topographical features such as slope and aspect had a more profound influence on SOC stocks than management history.


Sign in / Sign up

Export Citation Format

Share Document