Impact of Climate Change on Combined Flood and Drought events in India

Author(s):  
Salvadi Chetan Kumar ◽  
Vivek Gupta ◽  
Manoj Kumar Jain

<p>The drought and floods are a natural phenomenon of ecosystems. Many studies found that the frequency and intensity of individual events of floods and drought are increasing in recent decades due to climate change. However, it is still unclear whether the frequency of combined flood-drought events is increasing in the same year or not under the climate change scenario. To identify drought and flood characteristics, we used the Standardized Weighted Average of Precipitation (SWAP), and copula bivariate distribution concept to estimate the joint probabilities of combined flood-drought events of the same year. We utilized gridded rainfall data from the India Meteorological Department at 0.25 degree for the present study. We estimated drought, flood and combined flood-drought events for the base period (1901-1930) and the current period (1991-2018). The analysis demonstrates that about 51.97% of the total grid points show an increasing monthly SWAP values trend in the summer monsoon season. However, in winter, only 15.55% of the total grid points show an increase in the trend of monthly SWAP values. The univariate flood and drought analysis revealed that 83.98%, 83.98% and 81.90% of total grids show a significant percentage change of drought at 5, 10 and 25-year return periods, respectively when the current period is compared with the base period. Still, only, 27.88%, 16.32% and 13.82% of the total grids show a significant change in the flood 5-year, 10-year and 25-year return periods, respectively. We also found that combined flood-drought events' frequency increases in 39.21%, 36.49% and 20.71% of total grid points corresponding to 5, 10 and 25-year return period values, respectively. This study concluded that less intensity drought, flood, and combined flood-drought events are increasing in more grid points. The study outcomes will help the decision-makers to make efficient decision to overcome the impacts of the hydroclimatic extremes.</p>

Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 558 ◽  
Author(s):  
Dario Zhiña ◽  
Martín Montenegro ◽  
Lisseth Montalván ◽  
Daniel Mendoza ◽  
Juan Contreras ◽  
...  

Climate change threatens the hydrological equilibrium with severe consequences for living beings. In that respect, considerable differences in drought features are expected, especially for mountain-Andean regions, which seem to be prone to climate change. Therefore, an urgent need for evaluation of such climate conditions arises; especially the effects at catchment scales, due to its implications over the hydrological services. However, to study future climate impacts at the catchment scale, the use of dynamically downscaled data in developing countries is a luxury due to the computational constraints. This study performed spatiotemporal future long-term projections of droughts in the upper part of the Paute River basin, located in the southern Andes of Ecuador. Using 10 km dynamically downscaled data from four global climate models, the standardized precipitation and evapotranspiration index (SPEI) index was used for drought characterization in the base period (1981–2005) and future period (2011–2070) for RCP 4.5 and RCP 8.5 of CMIP5 project. Fitting a generalized-extreme-value (GEV) distribution, the change ratio of the magnitude, duration, and severity between the future and present was evaluated for return periods 10, 50, and 100 years. The results show that magnitude and duration dramatically decrease in the near future for the climate scenarios under analysis; these features presented a declining effect from the near to the far future. Additionally, the severity shows a general increment with respect to the base period, which is intensified with longer return periods; however, the severity shows a decrement for specific areas in the far future of RCP 4.5 and near future of RCP 8.5. This research adds knowledge to the evaluation of droughts in complex terrain in tropical regions, where the representation of convection is the main limitation of global climate models (GCMs). The results provide useful information for decision-makers supporting mitigating measures in future decades.


2021 ◽  
Vol 22 (2) ◽  
pp. 186-190
Author(s):  
G. PURNA DURGA ◽  
A. NAGA RAJESH ◽  
T.V. LAKSHMI KUMAR

Present study commences from the time series analysis of evaporation data sets obtained from the Coupled Modeled Inter comparison Project of Phase 5 (CMIP5) for the study period 1979 to 2100 under the RCP 4.5 and 8.5 emission scenarios over Interior Peninsular region during the Northeast monsoon (October to December) period. Further, a comparative analysis has been carried out with the evapotranspiration (ET) estimated from the Hargreaves and Samani (1982) using the temperature data of India Meteorological Department for the period 1979 to 2005. Our results show that evaporation trends are increasing with more prominence in RCP 8.5 scenario. This increase in evaporation has been attributed to increase in air temperature which is an undisputed fact under future climate change scenario. Different climate models of CMIP5 show mixed response by displaying the positive and negative correlations with the Hargreaves ET over the study region. The results of the study will be useful in understanding the bias between the modeled data sets and the estimates of ET from the observations.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 261-278
Author(s):  
B. AMUDHA ◽  
Y. E. A. RAJ ◽  
S. B. THAMPI

The first Doppler Weather Radar (DWR) of India Meteorological Department has been functional at Chennai since the year 2002 providing various meteorological and hydrological products. Validation and statistical analysis  of  the DWR estimated rainfall (RERF, x) data with rain gauge measured rainfall (RGRF, y) of 34 land based stations located in the semi-circular land area within 100 km radius of  Chennai DWR (CDLR100) has been performed for  the northeast monsoon (NEM) season of October-November-December (OND)  for the  12 year period 2002-13. The monthly and seasonal data have been derived using more than 1.42 lakh discrete daily RERF values available at a high resolution of 333 m × 333 m.          The major objective of the study is to compute the various statistical parameters of x and y including the bias between them on monthly and seasonal scales and to draw certain inferences. The analysis was done using three different types of averaging.  The yearly means  of  x and  y for OND over CDLR100 manifested both positive and negative epochs with the mean absolute deviation (MAD) computed as 11 cm (17% of mean). The short term normals over CDLR100 are derived as 274.9, 262.6, 96.5 and 629.8 mm for x and 243.8, 254.6, 128.0 and 627.4 mm for y for October, November, December and OND yielding bias values of -31.2, -8.0, 31.5 and -2.4 mm respectively.  The MAD for OND rainfall computed by pooling in all the 12 ´ 34 values is quite substantial at around 19 cm (30% of mean). The RF bias for each month / NEM season is shown to be independent of the geographical locations of the stations using correlation analysis.  Based on the raw values of  x and a proportional correction technique, estimated values of at the 1.42 lakh grid points  of  CDLR100  were derived yielding spatial means  of  273.3, 262.2, 92.5 and 628.4 mm for  x  and 243.4, 254.3, 122.9 and  622.1 mm  for   for the three months and OND respectively. The importance of size  of  the bias in the correct interpretation  of  x  has been discussed.  A few suggestions  based  on certain  statistical considerations have been putforth for decreasing the bias.  


Author(s):  
Le Thi Nhu Quynh

Life skills education to deal with the climate change and management of natural disaster prevention for students in ethnic minorities boarding high schools are very necessary nowadays. Based on educational activities of life skills, we establish and develop the awareness, attitudes and behavior for students, help them to find the causes and consequences of climate change and the natural disaster so that they shape attitudes and behavior of themselves in adaptation and mitigation due to climate change and natural disasters, as well as conscious propaganda for everyone to perform, toward a better life, a civilized society, meet overall educational goals during the current period. So that, life skills education for the goals of meeting the needs of disaster prevention for students are concerned. However, we not only say doctrinairely but also pay attention to the results of the life skills education due to meet the needs of disaster prevention, by then we form perceptions, attitudes and behavior for students in schools and in society. So there must be coordination between the forces of education in schools with families and society. Therefore, life skills education for students acquire sustainably. Assay results consulted reviews of managers, teachers showed that life skills educational management measures meeting the needs of disaster prevention for the students are necessary and available, suitable with the practice of ethnic minorities boarding high schools.


2019 ◽  
Vol 76 (5) ◽  
pp. 806-814
Author(s):  
Paul W. Simonin ◽  
Lars G. Rudstam ◽  
Patrick J. Sullivan ◽  
Donna L. Parrish ◽  
Bernard Pientka

We studied the consequences of a nonnative species introduction and changes in temperature on early mortality and recruitment of native rainbow smelt (Osmerus mordax) and nonnative alewife (Alosa pseudoharengus) in Lake Champlain using a simulation model. Distribution patterns of adults and young-of-the-year (YOY) fish were predicted using a model based on observed distribution of different age groups as a function of temperature and light profiles simulated on a daily basis. Mortality rates averaged over the growing season were calculated as a function of fish densities and overlap between adults and YOY. Survival of YOY rainbow smelt and alewife depended on which predator was most abundant. Rainbow smelt YOY mortality rates are highest when rainbow smelt adults are abundant, and alewife YOY mortality rates are highest when alewife adults are abundant, potentially allowing coexistence. August and September mortality rates were higher in the climate change scenario because of increased overlap of adults and YOY of both species. These results indicate that accounting for spatiotemporal fish distribution patterns can be important when forecasting the interacting effects of climate change and aquatic invasive species on fish recruitment.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 385
Author(s):  
Beatrice Nöldeke ◽  
Etti Winter ◽  
Yves Laumonier ◽  
Trifosa Simamora

In recent years, agroforestry has gained increasing attention as an option to simultaneously alleviate poverty, provide ecological benefits, and mitigate climate change. The present study simulates small-scale farmers’ agroforestry adoption decisions to investigate the consequences for livelihoods and the environment over time. To explore the interdependencies between agroforestry adoption, livelihoods, and the environment, an agent-based model adjusted to a case study area in rural Indonesia was implemented. Thereby, the model compares different scenarios, including a climate change scenario. The agroforestry system under investigation consists of an illipe (Shorea stenoptera) rubber (Hevea brasiliensis) mix, which are both locally valued tree species. The simulations reveal that farmers who adopt agroforestry diversify their livelihood portfolio while increasing income. Additionally, the model predicts environmental benefits: enhanced biodiversity and higher carbon sequestration in the landscape. The benefits of agroforestry for livelihoods and nature gain particular importance in the climate change scenario. The results therefore provide policy-makers and practitioners with insights into the dynamic economic and environmental advantages of promoting agroforestry.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 483
Author(s):  
Ümit Yıldırım ◽  
Cüneyt Güler ◽  
Barış Önol ◽  
Michael Rode ◽  
Seifeddine Jomaa

This study investigates the impacts of climate change on the hydrological response of a Mediterranean mesoscale catchment using a hydrological model. The effect of climate change on the discharge of the Alata River Basin in Mersin province (Turkey) was assessed under the worst-case climate change scenario (i.e., RCP8.5), using the semi-distributed, process-based hydrological model Hydrological Predictions for the Environment (HYPE). First, the model was evaluated temporally and spatially and has been shown to reproduce the measured discharge consistently. Second, the discharge was predicted under climate projections in three distinct future periods (i.e., 2021–2040, 2046–2065 and 2081–2100, reflecting the beginning, middle and end of the century, respectively). Climate change projections showed that the annual mean temperature in the Alata River Basin rises for the beginning, middle and end of the century, with about 1.35, 2.13 and 4.11 °C, respectively. Besides, the highest discharge timing seems to occur one month earlier (February instead of March) compared to the baseline period (2000–2011) in the beginning and middle of the century. The results show a decrease in precipitation and an increase in temperature in all future projections, resulting in more snowmelt and higher discharge generation in the beginning and middle of the century scenarios. However, at the end of the century, the discharge significantly decreased due to increased evapotranspiration and reduced snow depth in the upstream area. The findings of this study can help develop efficient climate change adaptation options in the Levant’s coastal areas.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hector Lobeto ◽  
Melisa Menendez ◽  
Iñigo J. Losada

AbstractExtreme waves will undergo changes in the future when exposed to different climate change scenarios. These changes are evaluated through the analysis of significant wave height (Hs) return values and are also compared with annual mean Hs projections. Hourly time series are analyzed through a seven-member ensemble of wave climate simulations and changes are estimated in Hs for return periods from 5 to 100 years by the end of the century under RCP4.5 and RCP8.5 scenarios. Despite the underlying uncertainty that characterizes extremes, we obtain robust changes in extreme Hs over more than approximately 25% of the ocean surface. The results obtained conclude that increases cover wider areas and are larger in magnitude than decreases for higher return periods. The Southern Ocean is the region where the most robust increase in extreme Hs is projected, showing local increases of over 2 m regardless the analyzed return period under RCP8.5 scenario. On the contrary, the tropical north Pacific shows the most robust decrease in extreme Hs, with local decreases of over 1.5 m. Relevant divergences are found in several ocean regions between the projected behavior of mean and extreme wave conditions. For example, an increase in Hs return values and a decrease in annual mean Hs is found in the SE Indian, NW Atlantic and NE Pacific. Therefore, an extrapolation of the expected change in mean wave conditions to extremes in regions presenting such divergences should be adopted with caution, since it may lead to misinterpretation when used for the design of marine structures or in the evaluation of coastal flooding and erosion.


Sign in / Sign up

Export Citation Format

Share Document