scholarly journals Local Land-Atmosphere Interaction: Exploring the Terrestrial Leg with “Little Omega”

2021 ◽  
Author(s):  
Michael Ek ◽  
Bert Holtslag

<p>Land-atmosphere coupling involves the interaction between the land-surface and the overlying atmospheric boundary layer, with effects on and by the free atmosphere above, and then with associated downstream impacts on clouds, convection and precipitation. We focus on the "terrestrial leg" of land-atmosphere coupling, that is, the near-surface land-atmosphere interaction where changing soil moisture affects the surface evapotranspiration. (The "atmospheric leg" of land-atmosphere coupling involves changes in surface fluxes and the effects on the atmospheric boundary layer, with those downstream impacts.) The change in surface evapotranspiration, or evaporative fraction, with changing soil moisture is an indicator of the strength of coupling between the soil/surface and the near-surface atmosphere, where for strong coupling, a given change in soil moisture yields a large change in the evaporative fraction, and for weak coupling, a given change in soil moisture yields a small change in the evaporative fraction. The strength of coupling depends on a number of different conditions and processes, i.e. the nature of the surface-layer turbulence, to what degree the surface is vegetated and by what type of vegetation, what the soil texture is, and how plant transpiration and soil hydraulic and soil thermal processes change with changing soil moisture. We examine this terrestrial leg of land-atmosphere coupling with an analytical development using the Penman-Monteith equation, then evaluate several years of fluxnet data sets from multiple sites to characterize these interactions on the local scale, contrasting different landscapes, e.g. grasslands versus forests, and other surface types. Initial findings show stronger coupling over forests. </p>

2016 ◽  
Vol 31 (6) ◽  
pp. 1973-1983 ◽  
Author(s):  
Paul A. Dirmeyer ◽  
Subhadeep Halder

Abstract When initial soil moisture is perturbed among ensemble members in the operational NWS global forecast model, surface latent and sensible fluxes are immediately affected much more strongly, systematically, and over a greater area than conventional land–atmosphere coupling metrics suggest. Flux perturbations are likewise transmitted to the atmospheric boundary layer more formidably than climatology-based metrics would indicate. Impacts are not limited to the traditional land–atmosphere coupling hot spots, but extend over nearly all ice-free land areas of the globe. Key to isolating this effect is that initial atmospheric states are identical among quantities correlated, pinpointing soil moisture and snow cover. A consequence of this high sensitivity is that significant positive impacts of realistic land surface initialization on the skill of deterministic near-surface temperature and humidity forecasts are also immediate and nearly universal during boreal spring and summer (the period investigated) and persist for at least 3 days over most land areas. Land surface initialization may be more broadly important for weather forecasts than previously realized, as the research focus historically has been on subseasonal-to-seasonal time scales. This study attempts to bridge the gap between climate studies with their associated coupling assessments and weather forecast time scales. Furthermore, errors in land surface initialization and shortcomings in the parameterization of atmospheric processes sensitive to surface fluxes may have greater consequences than previously recognized, the latter exemplified by the lack of impact on precipitation forecasts even though the simulation of boundary layer development is shown to be greatly improved with realistic soil moisture initialization.


2021 ◽  
Author(s):  
Stefano Materia ◽  
Constantin Ardilouze ◽  
Chloé Prodhomme ◽  
Markus G. Donat ◽  
Marianna Benassi ◽  
...  

AbstractLand surface and atmosphere are interlocked by the hydrological and energy cycles and the effects of soil water-air coupling can modulate near-surface temperatures. In this work, three paired experiments were designed to evaluate impacts of different soil moisture initial and boundary conditions on summer temperatures in the Mediterranean transitional climate regime region. In this area, evapotranspiration is not limited by solar radiation, rather by soil moisture, which therefore controls the boundary layer variability. Extremely dry, extremely wet and averagely humid ground conditions are imposed to two global climate models at the beginning of the warm and dry season. Then, sensitivity experiments, where atmosphere is alternatively interactive with and forced by land surface, are launched. The initial soil state largely affects summer near-surface temperatures: dry soils contribute to warm the lower atmosphere and exacerbate heat extremes, while wet terrains suppress thermal peaks, and both effects last for several months. Land-atmosphere coupling proves to be a fundamental ingredient to modulate the boundary layer state, through the partition between latent and sensible heat fluxes. In the coupled runs, early season heat waves are sustained by interactive dry soils, which respond to hot weather conditions with increased evaporative demand, resulting in longer-lasting extreme temperatures. On the other hand, when wet conditions are prescribed across the season, the occurrence of hot days is suppressed. The land surface prescribed by climatological precipitation forcing causes a temperature drop throughout the months, due to sustained evaporation of surface soil water. Results have implications for seasonal forecasts on both rain-fed and irrigated continental regions in transitional climate zones.


2001 ◽  
Vol 19 (5) ◽  
pp. 581-587 ◽  
Author(s):  
V. Goldberg ◽  
Ch. Bernhofer

Abstract. In the present study, the ability of different indices to quantify the coupling degree between a vegetated surface and the atmospheric boundary layer is tested. For this purpose, a one-and-a-half dimensional atmospheric boundary layer model, including a high resolved vegetation canopy, was applied (HIRVAC) and indices, such as the decoupling factor Ω, as well as other measures derived from model out-put were used. The aim of the study was to show that the quite complex coupling and feedback mechanisms can be described with these relatively simple measures. Model results illustrate that the vegetation and the atmosphere are well coupled (expressed by a lower Ω) under conditions of a tall and dense canopy, as well as under strong dynamic forcing. This better aerodynamic coupling leads to an increase in evapotranspiration, as well as an increase in the evaporative fraction. This fact was also shown by the second coupling measure: the relative changes in daily model evapotranspiration. This measure was inspired by the assumption that these changes are primarily dependent on the coupling degree between the surface and the atmosphere, if the other boundary conditions in the model are fixed. A third sensitivity measure was used according to Jacobs and de Bruin (1992). It shows that the sensitivity of evaporative fraction to stomata resistance is much higher with a better aerodynamic coupling. The results of the factor Ω; are in a good agreement with the findings of Jacobs and de Bruin: they stress that it is a valuable strategy to group vegetation into two simple categories (smooth and rough) for the understanding of vegetation-atmosphere coupling.Key words. Atmospheric composition and structure (biosphere- atmosphere interactions) – Hydrology (evapotranspiration; hydroclimatology)


2009 ◽  
Vol 48 (2) ◽  
pp. 349-368 ◽  
Author(s):  
Dev Niyogi ◽  
Kiran Alapaty ◽  
Sethu Raman ◽  
Fei Chen

Abstract Current land surface schemes used for mesoscale weather forecast models use the Jarvis-type stomatal resistance formulations for representing the vegetation transpiration processes. The Jarvis scheme, however, despite its robustness, needs significant tuning of the hypothetical minimum-stomatal resistance term to simulate surface energy balances. In this study, the authors show that the Jarvis-type stomatal resistance/transpiration model can be efficiently replaced in a coupled land–atmosphere model with a photosynthesis-based scheme and still achieve dynamically consistent results. To demonstrate this transformative potential, the authors developed and coupled a photosynthesis, gas exchange–based surface evapotranspiration model (GEM) as a land surface scheme for mesoscale weather forecasting model applications. The GEM was dynamically coupled with a prognostic soil moisture–soil temperature model and an atmospheric boundary layer (ABL) model. This coupled system was then validated over different natural surfaces including temperate C4 vegetation (prairie grass and corn field) and C3 vegetation (soybean, fallow, and hardwood forest) under contrasting surface conditions (such as different soil moisture and leaf area index). Results indicated that the coupled model was able to realistically simulate the surface fluxes and the boundary layer characteristics over different landscapes. The surface energy fluxes, particularly for latent heat, are typically within 10%–20% of the observations without any tuning of the biophysical–vegetation characteristics, and the response to the changes in the surface characteristics is consistent with observations and theory. This result shows that photosynthesis-based transpiration/stomatal resistance models such as GEM, despite various complexities, can be applied for mesoscale weather forecasting applications. Future efforts for understanding the different scaling parameterizations and for correcting errors for low soil moisture and/or wilting vegetation conditions are necessary to improve model performance. Results from this study suggest that the GEM approach using the photosynthesis-based soil vegetation atmosphere transfer (SVAT) scheme is thus superior to the Jarvis-based approaches. Currently GEM is being implemented within the Noah land surface model for the community Weather Research and Forecasting (WRF) Advanced Research Version Modeling System (ARW) and the NCAR high-resolution land data assimilation system (HRLDAS), and validation is under way.


2014 ◽  
Vol 14 (15) ◽  
pp. 8165-8172 ◽  
Author(s):  
W. M. Angevine ◽  
E. Bazile ◽  
D. Legain ◽  
D. Pino

Abstract. Soil moisture strongly controls the surface fluxes in mesoscale numerical models, and thereby influences the boundary layer structure. Proper initialization of soil moisture is therefore critical for faithful simulations. In many applications, such as air quality or process studies, the model is run for short, discrete periods (a day to a month). This paper describes one method for soil initialization in these cases – self-spinup. In self-spinup, the model is initialized with a coarse-resolution operational model or reanalysis output, and run for a month, cycling its own soil variables. This allows the soil variables to develop appropriate spatial variability, and may improve the actual values. The month (or other period) can be run more than once if needed. The case shown is for the Boundary Layer Late Afternoon and Sunset Turbulence experiment, conducted in France in 2011. Self-spinup adds spatial variability, which improves the representation of soil moisture patterns around the experiment location, which is quite near the Pyrenees Mountains. The self-spinup also corrects a wet bias in the large-scale analysis. The overall result is a much-improved simulation of boundary layer structure, evaluated by comparison with soundings from the field site. Self-spinup is not recommended as a substitute for multi-year spinup with an offline land data assimilation system in circumstances where the data sets required for such spinup are available at the required resolution. Self-spinup may fail if the modeled precipitation is poorly simulated. It is an expedient for cases when resources are not available to allow a better method to be used.


2021 ◽  
Author(s):  
Tobias Sebastian Finn ◽  
Gernot Geppert ◽  
Felix Ament

Abstract. We revise the potential of assimilating atmospheric boundary layer observations into the soil moisture. Previous studies often stated a negative assimilation impact of boundary layer observations on the soil moisture analysis, but recent developments in physically-consistent hydrological model systems and ensemble-based data assimilation lead to an emerging potential of boundary layer observations for land surface data assimilation. To explore this potential, we perform idealized twin experiments for a seven-day period in Summer 2015 with a coupled atmosphere-land modelling platform. We use TerrSysMP for these limited-area simulations with a horizontal resolution 1.0 km in the land surface component. We assimilate sparse synthetic 2-metre-temperature observations into the land surface component and update the soil moisture with a localized Ensemble Kalman filter. We show a positive assimilation impact of these observations on the soil moisture analysis during day-time and a neutral impact during night. Furthermore, we find that hourly-filtering with a three-dimensional Ensemble Kalman filter results in smaller errors than daily-smoothing with a one-dimensional Simplified Extended Kalman filter, whereas the Ensemble Kalman filter additionally allows us to directly assimilate boundary layer observations without an intermediate optimal interpolation step. We increase the physical consistency in the analysis for the land surface and boundary by updating the atmospheric temperature together with the soil moisture, which as a consequence further reduces errors in the soil moisture analysis. Based on these results, we conclude that we can merge the decoupled data assimilation cycles for the land surface and the atmosphere into one single cycle with hourly-like update steps.


2013 ◽  
Vol 14 (3) ◽  
pp. 829-849 ◽  
Author(s):  
Paul A. Dirmeyer ◽  
Yan Jin ◽  
Bohar Singh ◽  
Xiaoqin Yan

Abstract Data from 15 models of phase 5 of the Coupled Model Intercomparison Project (CMIP5) for preindustrial, historical, and future climate change experiments are examined for consensus changes in land surface variables, fluxes, and metrics relevant to land–atmosphere interactions. Consensus changes in soil moisture and latent heat fluxes for past-to-present and present-to-future periods are consistent with CMIP3 simulations, showing a general drying trend over land (less soil moisture, less evaporation) over most of the globe, with the notable exception of high northern latitudes during winter. Sensible heat flux and net radiation declined from preindustrial times to current conditions according to the multimodel consensus, mainly due to increasing aerosols, but that trend reverses abruptly in the future projection. No broad trends are found in soil moisture memory except for reductions during boreal winter associated with high-latitude warming and diminution of frozen soils. Land–atmosphere coupling is projected to increase in the future across most of the globe, meaning a greater control by soil moisture variations on surface fluxes and the lower troposphere. There is also a strong consensus for a deepening atmospheric boundary layer and diminished gradients across the entrainment zone at the top of the boundary layer, indicating that the land surface feedback on the atmosphere should become stronger both in absolute terms and relative to the influence of the conditions of the free atmosphere. Coupled with the trend toward greater hydrologic extremes such as severe droughts, the land surface seems likely to play a greater role in amplifying both extremes and trends in climate on subseasonal and longer time scales.


2014 ◽  
Vol 11 (4) ◽  
pp. 5275-5325 ◽  
Author(s):  
M. Combe ◽  
J. Vilà-Guerau de Arellano ◽  
H. G. Ouwersloot ◽  
C. M. J. Jacobs ◽  
W. Peters

Abstract. Understanding the interactions between the land surface and the atmosphere is key to model boundary-layer meteorology and cloud formation, as well as carbon cycling and crop yield. In this study we explore these interactions in the exchange of water, heat, and CO2 in a cropland–atmosphere system at the diurnal and local scale. We thereto couple an atmospheric mixed-layer model (MXL) to two land-surface schemes, developed from two different perspectives: while one land-surface scheme (A-gs) simulates vegetation from an atmospheric point of view, the other (GECROS) simulates vegetation from a carbon-storage point of view. We calculate surface fluxes of heat, moisture and carbon, as well as the resulting atmospheric state and boundary-layer dynamics, over a maize field in the Netherlands, for a day on which we have a rich set of observations available. Particular emphasis is placed on understanding the role of upper atmosphere conditions like subsidence, in comparison to the role of surface forcings like soil moisture. We show that the atmospheric-oriented model (MXL-A-gs) outperforms the carbon storage-oriented model (MXL-GECROS) on this diurnal scale. This performance strongly depends on the sensitivity of the modelled stomatal conductance to water stress, which is implemented differently in each model. This sensitivity also influences the magnitude of the surface fluxes of CO2, water and heat (surface control), and subsequently impacts the boundary-layer growth and entrainment fluxes (upper atmosphere control), which alter the atmospheric state. These findings suggest that observed CO2 mole fractions in the boundary layer can reflect strong influences of both the surface and upper atmospheric conditions, and the interpretation of CO2 mole fraction variations depends on the assumed land-surface coupling. We illustrate this with a sensitivity analysis where increased subsidence, typical for periods of drought, can induce a change of 12 ppm in atmospheric CO2 mole fractions, solely by decreasing the boundary-layer volume. The effect of such high subsidence on the Bowen ratio is of the same magnitude as induced by the depletion of soil moisture that would typically occur during a corresponding drought event. Correctly including such two-way land-surface interactions on the diurnal scale can thus potentially improve our understanding and interpretation of observed variations in atmospheric CO2, as well as improve crop yield forecasts by better describing the water loss and carbon gain.


2014 ◽  
Vol 11 (9) ◽  
pp. 10431-10463
Author(s):  
M. Decker ◽  
A. Pitman ◽  
J. Evans

Abstract. The strength of land–atmosphere coupling during the onset (September) through to the peak (February) of the wet season over Northern Australia is statistically diagnosed using ensembles of land surface model simulations that produce a range of different background soil moisture states. We derive coupling strength between the soil moisture and the planetary boundary layer via a statistical measure of association. The simulated evaporative fraction and the boundary layer are shown to be strongly coupled during both SON and DJF despite the differing background soil moisture states between the two seasons as among the ensemble members. The sign and magnitude of the surface layer soil moisture based coupling strength during the onset of the wet season (SON) differs from the coupling between the evaporative fraction and boundary layer from the same season, and the coupling between the surface soil moisture and boundary layer coupling during DJF. The patterns and magnitude of the surface flux-boundary layer coupling are not captured when coupling is diagnosed using the surface layer soil moisture alone. The conflicting results arise because the surface layer soil moisture lacks strong association with the atmosphere during the monsoon onset because the evapotranspiration is dominated by transpiration. Our results indicate that accurately diagnosing coupling strength in seasonally dry regions, such as Northern Australia, requires root zone soil moisture to be included.


2014 ◽  
Vol 14 (4) ◽  
pp. 4723-4744 ◽  
Author(s):  
W. M. Angevine ◽  
E. Bazile ◽  
D. Legain ◽  
D. Pino

Abstract. Soil moisture strongly controls the surface fluxes in mesoscale numerical models, and thereby influences the boundary layer structure. Proper initialization of soil moisture is therefore critical for faithful simulations. In many applications, such as air quality or process studies, the model is run for short, discrete periods (a day to a month). This paper describes one method for soil initialization in these cases, self-spinup. In self-spinup, the model is initialized with a coarse-resolution operational model or reanalysis output, and run for a month, cycling its own soil variables. This allows the soil variables to develop appropriate spatial variability, and may improve the actual values. The month (or other period) can be run more than once if needed. The case shown is for the Boundary Layer Late Afternoon and Sunset Turbulence experiment, conducted in France in 2011. Self-spinup adds spatial variability, which improves the representation of soil moisture patterns around the experiment location, which is quite near the Pyrenees Mountains. The self-spinup also corrects a wet bias in the large-scale analysis. The overall result is a much-improved simulation of boundary layer structure, evaluated by comparison with soundings from the field site. Self-spinup is not recommended as a substitute for multi-year spinup with an offline land data assimilation system in circumstances where the data sets required for such spinup are available at the required resolution. Self-spinup may fail if the modeled precipitation is poorly simulated. It is an expedient for cases when resources are not available to allow a better method to be used.


Sign in / Sign up

Export Citation Format

Share Document