Modelling dust distribution in the ejecta plume from nonspherical dust dynamics perspectives in support of the LICIACube and DART missions

2020 ◽  
Author(s):  
Stavro L. Ivanovski ◽  
Alice Lucchetti ◽  
Maurizio Pajola ◽  
Ivano Bertini ◽  
Giovanni Zanotti ◽  
...  
2020 ◽  
Vol 500 (1) ◽  
pp. 506-519
Author(s):  
Dejan Vinković ◽  
Miljenko Čemeljić

ABSTRACT We explore dust flow in the hottest parts of protoplanetary discs using the forces of gravity, gas drag, and radiation pressure. Our main focus is on the optically thin regions of dusty disc, where the dust is exposed to the most extreme heating conditions and dynamical perturbations: the surface of optically thick disc and the inner dust sublimation zone. We utilize results from two numerically strenuous fields of research. The first is the quasi-stationary solutions on gas velocity and density distributions from mangetohydrodynamical (MHD) simulations of accretion discs. This is critical for implementing a more realistic gas drag impact on dust movements. The second is the optical depth structure from a high-resolution dust radiation transfer. This step is critical for a better understanding of dust distribution within the disc. We describe a numerical method that incorporates these solutions into the dust dynamics equations. We use this to integrate dust trajectories under different disc wind models and show how grains end up trapped in flows that range from simple accretion on to the star to outflows into outer disc regions. We demonstrate how the radiation pressure force plays one of the key roles in this process and cannot be ignored. It erodes the dusty disc surface, reduces its height, resists dust accretion on to the star, and helps the disc wind in pushing grains outwards. The changes in grain size and porosity significantly affect the results, with smaller and porous grains being influenced more strongly by the disc wind and radiation pressure.


2010 ◽  
Vol 6 (S276) ◽  
pp. 405-406
Author(s):  
Elisabeth Crespe ◽  
Jean-Francois Gonzalez ◽  
Guillaume Laibe ◽  
Sarah T. Maddison ◽  
Laure Fouchet

AbstractTo form meter-sized pre-planetesimals in protoplanetary discs, dust aggregates have to decouple from the gas at a distance far enough from the central star so they are not accreted. Dust grains are affected by gas drag, which results in a vertical settling towards the mid-plane, followed by radial migration. To have a better understanding of the influence of growth on the dust dynamics, we use a simple grain growth model to determine the dust distribution in observed discs. We implement a constant growth rate into a gas+dust hydrodynamics SPH code and vary the growh rate to study the resulting effect on dust distribution. The growth rate allows us to determine the relative importance between friction and growth.We show that depending on the growth rate, a range of dust distribution can result. For large enough growth rates, grains can decouple from the gas before being accreted onto the central star, thus contributing as planetary building rocks.


2021 ◽  
Vol 12 (5) ◽  
pp. 101180
Author(s):  
Yue Li ◽  
Yougui Song ◽  
Dimitris G. Kaskaoutis ◽  
Jinbo Zan ◽  
Rustam Orozbaev ◽  
...  

2020 ◽  
Vol 499 (4) ◽  
pp. 5732-5748 ◽  
Author(s):  
Rahul Kannan ◽  
Federico Marinacci ◽  
Mark Vogelsberger ◽  
Laura V Sales ◽  
Paul Torrey ◽  
...  

ABSTRACT We present a novel framework to self-consistently model the effects of radiation fields, dust physics, and molecular chemistry (H2) in the interstellar medium (ISM) of galaxies. The model combines a state-of-the-art radiation hydrodynamics module with a H  and He  non-equilibrium thermochemistry module that accounts for H2 coupled to an empirical dust formation and destruction model, all integrated into the new stellar feedback framework SMUGGLE. We test this model on high-resolution isolated Milky-Way (MW) simulations. We show that the effect of radiation feedback on galactic star formation rates is quite modest in low gas surface density galaxies like the MW. The multiphase structure of the ISM, however, is highly dependent on the strength of the interstellar radiation field. We are also able to predict the distribution of H2, that allow us to match the molecular Kennicutt–Schmidt (KS) relation, without calibrating for it. We show that the dust distribution is a complex function of density, temperature, and ionization state of the gas. Our model is also able to match the observed dust temperature distribution in the ISM. Our state-of-the-art model is well-suited for performing next-generation cosmological galaxy formation simulations, which will be able to predict a wide range of resolved (∼10 pc) properties of galaxies.


Gefahrstoffe ◽  
2020 ◽  
Vol 80 (09) ◽  
pp. 344-348
Author(s):  
M. Clauß ◽  
S. Linke ◽  
A. C. Springorum

The particle size distribution of airborne bacterial conglomerates is an important factor in calculating possible spread distances of the bacteria over the air. Therefore, a size-selective collection system based on an emission impinger was developed to compare the distribution of total bacteria and staphylococci in particle fractions PM2.5, PM10 and total dust in the emission of two fattening pig stables. Mean emissions of 7.2 × 104 cfu/m³ total bacteria, 6.1 × 104 cfu/m³ staphylococci and 2.8 × 106 cells/m3 measured. About 30% of total bacteria and staphylococci were found in the PM2.5 particle size fraction and about 60% in PM10. The average dust distribution was 80% PM10 and 60% PM2.5. The results show that airborne bacteria from fattening pig units mainly occur on larger particles and do not correlate with dust fractions. The found conditions should be considered in future dispersion modelling.


2011 ◽  
Vol 59 (14) ◽  
pp. 1795-1803 ◽  
Author(s):  
Vladimir Pines ◽  
Marianna Zlatkowski ◽  
Arnon Chait

2018 ◽  
Vol 479 (3) ◽  
pp. 4187-4206 ◽  
Author(s):  
Giovanni Dipierro ◽  
Guillaume Laibe ◽  
Richard Alexander ◽  
Mark Hutchison

2012 ◽  
Vol 12 (21) ◽  
pp. 10545-10567 ◽  
Author(s):  
P. Nabat ◽  
F. Solmon ◽  
M. Mallet ◽  
J. F. Kok ◽  
S. Somot

Abstract. The present study investigates the dust emission and load over the Mediterranean basin using the coupled chemistry–aerosol–regional climate model RegCM-4. The first step of this work focuses on dust particle emission size distribution modeling. We compare a parameterization in which the emission is based on the individual kinetic energy of the aggregates striking the surface to a recent parameterization based on an analogy with the fragmentation of brittle materials. The main difference between the two dust schemes concerns the mass proportion of fine aerosol that is reduced in the case of the new dust parameterization, with consequences for optical properties. At the episodic scale, comparisons between RegCM-4 simulations, satellite and ground-based data show a clear improvement using the new dust distribution in terms of aerosol optical depth (AOD) values and geographic gradients. These results are confirmed at the seasonal scale for the investigated year 2008. This change of dust distribution has sensitive impacts on the simulated regional dust budget, notably dry dust deposition and the regional direct aerosol radiative forcing over the Mediterranean basin. In particular, we find that the new size distribution produces a higher dust deposition flux, and smaller top of atmosphere (TOA) dust radiative cooling. A multi-annual simulation is finally carried out using the new dust distribution over the period 2000–2009. The average SW radiative forcing over the Mediterranean Sea reaches −13.6 W m−2 at the surface, and −5.5 W m−2 at TOA. The LW radiative forcing is positive over the basin: 1.7 W m−2 on average over the Mediterranean Sea at the surface, and 0.6 W m−2 at TOA.


Sign in / Sign up

Export Citation Format

Share Document