Inclusion of scientific algorithms in MATISSE

2020 ◽  
Author(s):  
Edoardo Rognini ◽  
Angelo Zinzi ◽  
Davide Grassi ◽  
Alberto Adriani ◽  
Alessandro Mura ◽  
...  

<p>MATISSE (Multi-purpose Advanced Tool for the Solar System Exploration) [1] is a tool that allows the visualization of observations from space missions and datasets derived from these observations on  a  three-dimensional  model  of  the  selected  target  body.  The  second  version  of  the  tool  (named MATISSE  2.0 –https://tools.ssdc.asi.it/Matisse)  will,  among  other  things,  include  algorithms developed  by  partner  research  teams;  in  this  work  we  focalize  our  attention  on  the  MATISSE inclusion of two codes developed for atmospheric retrieval and thermophysical modeling. The retrieval code is used for the analysis of the spectra provided by the JIRAM instrument (Jovian Infrared Auroral Mapper [2]) onboard the NASA’s Juno mission, whose main purpose is the study of the upper regions of Jupiter’s atmosphere in the 2-5 μm wavelength range and pressure up to 5-7 bar. The spectra provided by the instrument are processed with the retrieval code that calculates, for each pixel of a hyperspectral image, the chemical and physical parameters in the corresponding points of the  atmosphere  [3].  The  code  processes  all  pixels  of  a  hyperspectral  image,  so  parallelization  is convenient  in  order  to  reduce  the  computation  time;  this  is  possible  by  using  the  Python  language tools, which allow the execution of a code written in its own language (FORTRAN in this case) by providing  the  required  parallelization. As a further optimization step,  the  code has been converted into a Docker image to make it portable and easy to run on heterogeneous architectures. The second  code  included  in  MATISSE  is  a  thermophysical  model  that  calculates  the  surface temperature of airless bodies as function of thermal conductivity [4,5] and other physical properties; the calculated temperature can be compared with the measured ones, if any, in order to retrieve the thermal properties of the soil, or can be used to compute other temperature-dependent quantities. At the present time this code is going to be used for Mercury and Ceres and is almost ready to be included in MATISSE 2.0.</p> <p>[1] Zinzi, A., et al. (2016), Astronomy & Computing, 15, 16-28<br />[2] Adriani, A., et al. (2017), Space Science Reviews, 213, 393-446<br />[3] Grassi et al. (2010), Planetary and Space Science, 58, 1265-1278<br />[4] Capria, M. T. et al (2014), Geophysical Research Letters, 41, 1438-1443<br />[5] Rognini et al. (2019), Journal of Geophysical Research, https://doi.org/10.1029/2018JE005733</p>

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7829
Author(s):  
Meng Yang ◽  
Munawwar Ali Abbas ◽  
Wissam Sadiq Khudair

In this research, we studied the impact of temperature dependent viscosity and thermal radiation on Eyring Powell fluid with porous channels. The dimensionless equations were solved using the perturbation technique using the Weissenberg number (ε ≪ 1) to obtain clear formulas for the velocity field. All of the solutions for the physical parameters of the Reynolds number (Re), magnetic parameter (M), Darcy parameter (Da) and Prandtl number (Pr) were discussed through their different values. As shown in the plots the two-dimensional and three-dimensional graphical results of the velocity profile against various pertinent parameters have been illustrated with physical reasons. The results revealed that the temperature distribution increases for higher Prandtl and thermal radiation values. Such findings are beneficial in the field of engineering sciences.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1077
Author(s):  
Muhammad Tamoor ◽  
Muhammad Kamran ◽  
Sadique Rehman ◽  
Aamir Farooq ◽  
Rewayat Khan ◽  
...  

In this study, a numerical approach was adopted in order to explore the analysis of magneto fluid in the presence of thermal radiation combined with mixed convective and slip conditions. Using the similarity transformation, the axisymmetric three-dimensional boundary layer equations were reduced to a self-similar form. The shooting technique, combined with the Range–Kutta–Fehlberg method, was used to solve the resulting coupled nonlinear momentum and heat transfer equations numerically. When physically interpreting the data, some important observations were made. The novelty of the present study lies in finding help to control the rate of heat transfer and fluid velocity in any industrial manufacturing processes (such as the cooling of metallic plates). The numerical results revealed that the Nusselt number decrease for larger Prandtl number, curvature, and convective parameters. At the same time, the skin friction coefficient was enhanced with an increase in both slip velocity and convective parameter. The effect of emerging physical parameters on velocity and temperature profiles for a nonlinear stretching cylinder has been thoroughly studied and analyzed using plotted graphs and tables.


2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Thomas Fellner ◽  
Elena Zukowski ◽  
Jürgen Wilde ◽  
H. Kück ◽  
H. Richter ◽  
...  

This investigation is aimed at the modeling of both the fabrication process and the reliability of press-fit interconnections on moulded interconnect devices (MID). These are multifunctional three-dimensional substrates, produced by thermoplastic injection moulding for large-series applications. The assembly process and subsequently the durability of press-fit interconnections has been modeled and proved with a finite element software. Especially, a simulation tool for process optimizations was created and applied. In order to obtain realistic results, a creep model for the investigated base material, a liquid-crystal polymer (LCP), was generated and verified by experiments. Required friction coefficients between metal pin and base material were determined by adapting simulations and experiments. Retention forces of pins pressed into substrate holes during as well after the assembly process, and after temperature loads were predicted by simulations. Additionally, the decreasing extraction forces over time due to creep in the thermoplastic base material have been predicted for different storage temperatures as well with finite element analyses. Following, the numerical results of the process and reliability modeling were verified by experiments. It is concluded that the behavior of the mechanical contact of the pin-substrate system, can be suitably described time- and temperature-dependent.


1976 ◽  
Vol 54 (14) ◽  
pp. 1454-1460 ◽  
Author(s):  
T. Tiedje ◽  
R. R. Haering

The theory of ultrasonic attenuation in metals is extended so that it applies to quasi one and two dimensional electronic systems. It is shown that the attenuation in such systems differs significantly from the well-known results for three dimensional systems. The difference is particularly marked for one dimensional systems, for which the attenuation is shown to be strongly temperature dependent.


2014 ◽  
Vol 1008-1009 ◽  
pp. 850-860 ◽  
Author(s):  
Zhou Wei Zhang ◽  
Jia Xing Xue ◽  
Ya Hong Wang

A calculation method for counter-current type coil-wound heat exchanger is presented for heat exchange process. The numerical simulation method is applied to determine the basic physical parameters of wound bundles. By controlling the inlet fluid velocity varying in coil-wound heat exchanger to program and calculate the iterative process. The calculation data is analyzed by comparison of numerical result and the unit three dimensional pipe bundle model was built. Studies show that the introduction of numerical simulation can simplify the pipe winding process and accelerate the calculation and design of overall configuration in coil-wound heat exchanger. This method can be applied to the physical modeling and heat transfer calculation of pipe bundles in coil wound heat exchanger, program to calculate the complex heat transfer changing with velocity and other parameters, and optimize the overall design and calculation of spiral bundles.


2019 ◽  
Vol 8 (1) ◽  
pp. 356-367 ◽  
Author(s):  
J. V. Ramana Reddy ◽  
V. Sugunamma ◽  
N. Sandeep

Abstract The 3D flow of non-Newtonian nanoliquid flows past a bidirectional stretching sheet with heat transfer is investigated in the present study. It is assumed that viscosity of the liquid varies with temperature. Carreau non-Newtonain model, Tiwari and Das nanofluid model are used to formulate the problem. The impacts of Joule heating, nonlinear radiation and non-uniform (space and temperature dependent) heat source/sink are accounted. Al-Cu-CH3OH and Cu-CH3OH are considered as nanoliquids for the present study. The solution of the problem is attained by the application of shooting and R.K. numerical procedures. Graphical and tabular illustrations are incorporated with a view of understanding the influence of various physical parameters on the flow field. We eyed that using of Al-Cu alloy nanoparticles in the carrier liquid leads to superior heat transfer ability instead of using only Aluminum nanoparticles. Weissenberg number and viscosity parameter have inclination to exalt the thermal field.


2006 ◽  
Vol 61 (7) ◽  
pp. 792-798 ◽  
Author(s):  
Klaus Müller-Buschbaum

The reaction of a melt of unsubstituted imidazole with praseodymium metal yields bright green crystals of 3D-[Pr(Im)3(ImH)]@ImH. Imidazolate ligands coordinate η1 via both N atoms their 1,3 positioning within the heterocycle being responsible for the connection of praseodymium atoms. A 3-dimensional network is formed with imidazole molecules from the melt intercalated in the crystal structure. The imidazole molecules can be released and temperature dependent reversibly be exchanged with gas molecules including argon. Thus the solvent free high temperature synthesis of rare earth elements with amine melts can also be utilized for “crystal engineering” and the synthesis of compounds with material science aspects. Furthermore 3D-[Pr(Im)3(ImH)]@ImH is the first unsubstituted imidazolate of the lanthanides.


2004 ◽  
Vol 10 (5) ◽  
pp. 373-385
Author(s):  
Steffen Kämmerer ◽  
Jürgen F. Mayer ◽  
Heinz Stetter ◽  
Meinhard Paffrath ◽  
Utz Wever ◽  
...  

This article describes the development of a method for optimization of the geometry of three-dimensional turbine blades within a stage configuration. The method is based on flow simulations and gradient-based optimization techniques. This approach uses the fully parameterized blade geometry as variables for the optimization problem. Physical parameters such as stagger angle, stacking line, and chord length are part of the model. Constraints guarantee the requirements for cooling, casting, and machining of the blades.The fluid physics of the turbomachine and hence the objective function of the optimization problem are calculated by means of a three-dimensional Navier-Stokes solver especially designed for turbomachinery applications. The gradients required for the optimization algorithm are computed by numerically solving the sensitivity equations. Therefore, the explicitly differentiated Navier-Stokes equations are incorporated into the numerical method of the flow solver, enabling the computation of the sensitivity equations with the same numerical scheme as used for the flow field solution.This article introduces the components of the fully automated optimization loop and their interactions. Furthermore, the sensitivity equation method is discussed and several aspects of the implementation into a flow solver are presented. Flow simulations and sensitivity calculations are presented for different test cases and parameters. The validation of the computed sensitivities is performed by means of finite differences.


1977 ◽  
Vol 18 (80) ◽  
pp. 373-389 ◽  
Author(s):  
D. Jenssen

AbstractA three-dimensional model of the temperature and velocity distribution within any arbitrary-shaped ice mass is described. There is a mutual interaction in the model between the flow of the ice and its thermodynamics, since the flow law used in the model is temperature-dependent.Ice growth in three dimensions is governed by mass accumulation through precipitation, by mass depletion through loss of ice over the ocean, and by continuity requirements. Phase changes at the base of the ice are accounted for. The model has been applied in art exploratory manner to the Greenland ice sheet. Changes in the ice shape and temperature are presented and discussed. The basic shortcoming of the model as here presented appears primarily due to the coarse finite-difference mesh used, and to an unsophisticated approach to modelling the boundary ice.


Sign in / Sign up

Export Citation Format

Share Document