scholarly journals A portrait of the Trans-Neptunian Object (143707) 2003 UY117 from a stellar occultation and photometry data.

2021 ◽  
Author(s):  
Jose L. Ortiz ◽  
Pablo Santos-Sanz ◽  
Bruno Sicardy ◽  
Mónica Vara-Lubiano ◽  
Nicolás Morales ◽  
...  

<p>Within the Lucky Star international collaboration* on stellar occultations by TNOs and other outer solar system bodies, we predicted the occultation by the TNO (143707) 2003 UY117 of an mV ~ 14.6 mag star on 23 October 2020. Around a week before the occultation date, we updated and refined the prediction using high precision astrometry obtained using the 2 m Liverpool telescope located at El Roque de Los Muchachos Observatory on La Palma, Spain. The update resulted in a shadow path with good observability potential. We carried out a specific campaign involving 27 observing sites in the south of Spain and North of Africa to observe the occultation. We recorded 4 positive detections and several very close misses to the south of the body. With this information we determined the silhouette of 2003 UY117 at the moment of the occultation. We also obtained the geometric albedo and the size for this object. In addition to this, we carried out several photometric runs with large telescopes to determine the rotation period and rotational phase at the time of the occultation. The body presents a clear double-peaked rotational light curve consistent with a triaxial ellipsoid of considerable elongation, which means that a rotational light curve analysis is critical to correctly interpret the occultation results. The preliminary analysis indicates a larger equivalent diameter than that determined from Herschel thermal data, although consistent within the large error bars of the thermal determination. We will present the preliminary results and discuss their implications.</p> <p>*Lucky Star (LS) is an EU-funded research activity to obtain physical properties of distant Solar System objects using stellar occultations. LS collaboration agglomerates the efforts of the Paris, Granada, and Rio teams. https://lesia.obspm.fr/lucky-star/ </p> <p>Acknowledgements:</p> <p>JLO, PS-S, NM, MV, and RD acknowledge financial support from the State Agency for Research of the Spanish MCIU through the ‘Center of Excellence Severo Ochoa’ award for the Instituto de Astrofísica de Andalucía (SEV-2017-0709), they also acknowledge the financial support by the Spanish grant AYA-2017-84637-R and AYARTI2018- 098657-J-I00 ‘LEO-SBNAF’ (MCIU/AEI/FEDER, UE).</p>

2021 ◽  
Author(s):  
Mónica Vara-Lubiano ◽  
Nicolás Morales ◽  
Flavia Rommel ◽  
José Luis Ortiz ◽  
Bruno Sicardy ◽  
...  

<p>Physical properties of Trans-Neptunian Objects (TNOs) have been of increasing interest in the last two decades, as these objects are considered to be among the least altered through the Solar System evolution, and thus preserve valuable information about its origin [1]. The study of these objects through the ground-based method of stellar occultations has risen in the last years, as this technique allows the determination of physical properties with considerably good accuracies [2,3,4]. </p> <p>Here we present the results of the multi-chord stellar occultation of the GAIA source 3444789965847631104 (m<sub>v</sub>≈16.8) by the TNO (19521) Chaos on 2020 November 20, which was predicted within our systematic programme on stellar occultations by TNOs and outer solar system bodies [5]. The prediction was updated with astrometric observations carried out two days before the event with the 1.23-m telescope at Calar Alto observatory in Almería, Spain, and it was favorable to the South of Europe. The campaign that we organized involved 19 observing sites and resulted in three positive detections, one of them obtained from the 4.2-m WHT telescope at La Palma, 11 negative detections, and 5 sites that could not observe due to bad weather.<em> </em></p> <p>We derived the instantaneous limb of Chaos by fitting the extremities of the positive chords to an ellipse to determine accurate size, shape, and geometric albedo for this object. The preliminary results give a slightly smaller area-equivalent diameter than the one derived from Herschel thermal data [6], but photometric observations of this object are still under analysis to complement and improve the results. <strong><br /><br /></strong><strong>References</strong></p> <p>[1] Morbidelli, A., Levison, H. F., & Gomes, R. 2008, ed. M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, A. Morbidelli, R. Dotson, 275</p> <p>[2] Ortiz, J. L., Sicardy, B., Braga-Ribas, F., et al. 2012, Nature, 491, 566</p> <p>[3] Braga-Ribas, F., Sicardy, B., Ortiz, J. L., et al. 2013, ApJ, 773, 26</p> <p>[4] Ortiz, J.L., Santos-Sanz, P., Sicardy, B., et al. 2017, Nature, 550, 7675, pp. 219-223</p> <p>[5] Camargo, J. I. B., Vieira-Martins, R., Assafin, M., et al. 2014, A&A, 561, A37</p> <p>[6] Vilenius, E., Kiss, C., Mommert, M., Müller, T., et al. 2012, A&A, 541, A94 </p> <p><strong>Acknowledgements</strong><strong> </strong></p> <p>We acknowledge financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). Part of the research leading to these results has received funding from the European Research Council under the European Community’s H2020 (2014-2020/ERC Grant Agreement no. 669416 “LUCKY STAR”). M.V-L. acknowledges funding from Spanish project AYA2017-89637-R (FEDER/MICINN). P.S-S. acknowledges financial support by the Spanish grant AYA-RTI2018-098657-J-I00 ``LEO-SBNAF'' (MCIU/AEI/FEDER, UE). This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). We are grateful to the CAHA and OSN staffs. This research is partially based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by Junta de Andalucía and Consejo Superior de Investigaciones Científicas (IAA-CSIC). This research was also partially based on observation carried out at the Observatorio de Sierra Nevada (OSN) operated by Instituto de Astrofísica de Andalucía (CSIC). Partially based on observations made with the Tx40 telescope at the Observatorio Astrofísico de Javalambre in Teruel, a Spanish Infraestructura Cientifico-Técnica Singular (ICTS) owned, managed and operated by the Centro de Estudios de Física del Cosmos de Aragón (CEFCA). Tx40 is funded with the Fondos de Inversiones de Teruel (FITE).</p>


2021 ◽  
Author(s):  
Nicolas Morales ◽  
Jose Luis Ortiz ◽  
Pablo Santos-Sanz ◽  
Monica Vara ◽  
Damya Souami

<p>Trans-Neptunian Objects (TNOs) are thought to be among the least evolved Solar System objects, which retain information on the origin and evolution of the outer parts of it. They are located at far distances of the Sun, where the influence of our star is less dramatic than in the closer regions. Thus, these icy objects are extremely interesting bodies that hide plenty of information on the physical and dynamical processes that<br />shaped our Solar System.<br />We only know a few retrograde TNOs so far (e.g. 2008 KV42 [1], 2011 KT19 [2], 2004 XR190). One of the few known retrograde objects listed in the MPC database as a scattered disk object is 2013 LU28, which has a high orbital eccentricity (e = 0.95), a large semimajor axis (a= 181 AU) and a very high inclination (i = 125.4º). This exotic object is also classified as an “extended centaur”, because its perihelion at 8.7 AU moves it into the centaur region.<br />The physical properties of 2013 LU28, such as its rotational period and light curve amplitude, are unknown but can be revealed through photometry. With this aim, we observed this object during three observing runs on 2021 January and March using two telescopes, the 1.23 m telescope at Calar Alto Observatory in Almería, Spain and the 1.5 m telescope at Sierra Nevada Observatory in Granada, Spain. From these observations we derived the first determination of the rotational light curve of 2013LU28 from which we derived its rotational period and its peak-to-peak light curve amplitude. The obtained amplitude turned out to be higher than the average amplitude of most TNOs, which points toward an elongated or a binary object. Other magnitudes, such as its absolute magnitude (H) were also derived. We will present and discuss preliminary results on all the above.</p> <p><br />Acknowledgements<br />The authors acknowledge financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). P.S-S. acknowledges financial support by the Spanish grant AYA-    RTI2018-098657-J-I00 "LEO-SBNAF" (MCIU/AEI/FEDER, UE). We are grateful to the CAHA and OSN staffs. This research is partially based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by Junta de Andalucı́a and Consejo Superior de Investigaciones Cientı́ficas (IAA-CSIC). This research was also partially based on observation carried out at the Observatorio de Sierra Nevada  (OSN) operated by Instituto de Astrofı́sica de Andalucı́a (CSIC).</p> <p>Bibliography<br />[1] B. Gladman, J. Kavelaars, J.-M. Petit, M. L. N. Ashby, J. Parker, J. et al. ApJ 697:L91–L94, 2009<br />[2] Ying-Tung Chen , Hsing Wen Lin, Matthew J. Holman, Matthew J. Payne et al. ApJ 827:L24 (5pp), 2016</p>


2017 ◽  
Vol 12 (S330) ◽  
pp. 377-381
Author(s):  
Bruno Sicardy

AbstractStellar occultations by solar system objects allow kilometric accuracy, permit the detection of tenuous atmospheres (at nbar level), and the discovery of rings. The main limitation was the prediction accuracy, typically 40 mas, corresponding to about 1,000 km projected at the body. This lead to large time dedicated to astrometry, tedious logistical issues, and more often than not, mere miss of the event. The Gaia catalog, with sub-mas accuracy, hugely improves both the star positions, resulting in achievable accuracies of about 1 mas for the shadow track on Earth. This permits much more carefully planned campaigns, with success rate approaching 100%, weather permitting. Scientific perspectives are presented, e.g. central flashes caused by Plutos atmosphere revealing hazes and winds near its surface, grazing occultations showing topographic features, occultations by Chariklos rings unveiling dynamical features such as proper mode “breathing”.


2021 ◽  
Author(s):  
Estela Fernández-Valenzuela ◽  
Jose Luis Ortiz ◽  
Bryan Holler ◽  
Monica Vara-Lubiano ◽  
Nicolas Morales ◽  
...  

<p>Two stellar occultations by the largest satellite of the dwarf planet Haumea, Hi'iaka, were predicted to happen on April, 6th and 16th, 2021. Additional high accuracy astrometric analysis was carried out in order to refine the prediction for April 6th, using several telescopes in the 1.2-m to 2-m range, with the final shadow path crossing North Africa. We successfully detected the first event from TRAPPIST-North telescope at Oukaïmeden Observatory (Morocco). Although it was recorded from only one site, this first detection allowed us to improve the prediction for the second that crossed North America from East to West. We had a good success recording six positive detections and several negative detections that constrain the shape and size of the body. The light curves obtained from the different observatories provide the time at which the star disappears and reappears, which are translated into chords (the projected lines on the sky-plane as observed from each location). Additionally, we carried out a campaign to study Hi'iaka's rotational light-curve, studying the residuals of Haumea's rotational light-curve to a four-order Fourier fit. We obtained the rotational phases at the times of the occultations, which is critical for the analysis of the occultations, given that Hi’iaka is clearly non-spherical. Our preliminary results show that Hi'iaka indeed has a triaxial shape with a larger effective diameter than what has been published so far. The preliminary results and their implications will be discussed in this talk. </p>


Author(s):  
T.B. Ball ◽  
W.M. Hess

It has been demonstrated that cross sections of bundles of hair can be effectively studied using image analysis. These studies can help to elucidate morphological differences of hair from one region of the body to another. The purpose of the present investigation was to use image analysis to determine whether morphological differences could be demonstrated between male and female human Caucasian terminal scalp hair.Hair samples were taken from the back of the head from 18 caucasoid males and 13 caucasoid females (Figs. 1-2). Bundles of 50 hairs were processed for cross-sectional examination and then analyzed using Prism Image Analysis software on a Macintosh llci computer. Twenty morphological parameters of size and shape were evaluated for each hair cross-section. The size parameters evaluated were area, convex area, perimeter, convex perimeter, length, breadth, fiber length, width, equivalent diameter, and inscribed radius. The shape parameters considered were formfactor, roundness, convexity, solidity, compactness, aspect ratio, elongation, curl, and fractal dimension.


2018 ◽  
Vol 32 (6) ◽  
pp. 1282 ◽  
Author(s):  
Jyothi Kara ◽  
Angus H. H. Macdonald ◽  
Carol A. Simon

The nereidid Pseudonereis variegata (Grube, 1866) described from Chile includes 14 synonymised species from 10 type localities with a discontinuous distribution, but no taxonomic or molecular studies have investigated the status of this species outside Chile. Two synonymised species, Mastigonereis podocirra Schmarda, 1861 and Nereis (Nereilepas) stimpsonis Grube, 1866, were described from South Africa and investigated here using morphological examination. MtCOI species delimitation analyses and morphology were used to determine the status of P. variegata in South Africa. Morphological examination revealed that museum and freshly collected specimens from South Africa that conform to the general description of P. variegata are similar to M. podocirra and N. stimpsonis with respect to the consistent absence of homogomph spinigers in the inferior neuropodial fascicle, expanded notopodial ligules and the subterminal attachment of dorsal cirri in posterior parapodia. The synonymy of M. podocirra and N. stimpsonis as P. variegata are rejected and P. podocirra, comb. nov. is reinstated. Morphologically, Pseudonereis podocirra differed from specimens from Chile with regard to the numbers of paragnaths, the absence of homogomph spinigers and changes in parapodial morphology along the body. Independence of these species was further supported by genetic distances, automatic barcode gap discovery and multi-rate Poisson tree process species delimitation analyses of 77 mtCOI sequences. Haplotype network revealed no genetic structuring within the South African populations. http://zoobank.org/urn:lsid:zoobank.org:pub:F0B1A5AF-9CE9-4A43-ACCF-17117E1C2F21


2018 ◽  
Vol 620 ◽  
pp. A91 ◽  
Author(s):  
J. Ďurech ◽  
J. Hanuš

Context. In addition to stellar data, Gaia Data Release 2 (DR2) also contains accurate astrometry and photometry of about 14 000 asteroids covering 22 months of observations. Aims. We used Gaia asteroid photometry to reconstruct rotation periods, spin axis directions, and the coarse shapes of a subset of asteroids with enough observations. One of our aims was to test the reliability of the models with respect to the number of data points and to check the consistency of these models with independent data. Another aim was to produce new asteroid models to enlarge the sample of asteroids with known spin and shape. Methods. We used the lightcurve inversion method to scan the period and pole parameter space to create final shape models that best reproduce the observed data. To search for the sidereal rotation period, we also used a simpler model of a geometrically scattering triaxial ellipsoid. Results. By processing about 5400 asteroids with at least 10 observations in DR2, we derived models for 173 asteroids, 129 of which are new. Models of the remaining asteroids were already known from the inversion of independent data, and we used them for verification and error estimation. We also compared the formally best rotation periods based on Gaia data with those derived from dense lightcurves. Conclusions. We show that a correct rotation period can be determined even when the number of observations N is less than 20, but the rate of false solutions is high. For N > 30, the solution of the inverse problem is often successful and the parameters are likely to be correct in most cases. These results are very promising because the final Gaia catalogue should contain photometry for hundreds of thousands of asteroids, typically with several tens of data points per object, which should be sufficient for reliable spin reconstruction.


Obiter ◽  
2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Lynette Swart ◽  
Vivienne A Lawack-Davids

This article examines the regulatory framework pertaining to the South African financial markets. The authors explain selected terminology and provide an overview of regulators in order to create an understanding of the regulatory environment to enhance transparency and add to the body of knowledge in financial markets law.


2017 ◽  
Vol 12 (S330) ◽  
pp. 382-385
Author(s):  
Josselin Desmars ◽  
Julio Camargo ◽  
Bruno Sicardy ◽  
Felipe Braga-Ribas ◽  
Roberto Vieira-Martins ◽  
...  

AbstractStellar occultations are a unique technique to access physical characteristics of distant solar system objects from the ground. They allow the measure of the size and the shape at kilometric level, the detection of tenuous atmospheres (few nanobars), and the investigation of close vicinity (satellites, rings) of Transneptunian objects and Centaurs. This technique is made successful thanks to accurate predictions of occultations. Accuracy of the predictions depends on the uncertainty in the position of the occulted star and the object's orbit. The Gaia stellar catalogue (Gaia Collaboration (2017)) now allows to get accurate astrometric stellar positions (to the mas level). The main uncertainty remains on the orbit. In this context, we now take advantage of the NIMA method (Desmars et al.(2015)) for the orbit determination and of the Gaia DR1 catalogue for the astrometry. In this document, we show how the orbit determination is improved by reducing current and some past observations with Gaia DR1. Moreover, we also use more than 45 past positive occultations observed in the 2009-2017 period to derive very accurate astrometric positions only depending on the position of the occulted stars (about few mas with Gaia DR1). We use the case of (10199) Chariklo as an illustration. The main limitation lies in the imprecision of the proper motions which is going to be solved by the Gaia DR2 release.


Sign in / Sign up

Export Citation Format

Share Document