Supplementary material to "Cyclostratigraphy of the Middle to Upper Ordovician successions of the Armorican Massif (western France) using portable X-ray fluorescence"

Author(s):  
Matthias Sinnesael ◽  
Alfredo Loi ◽  
Marie-Pierre Dabard ◽  
Thijs R. A. Vandenbroucke ◽  
Philippe Claeys
2022 ◽  
Author(s):  
Matthias Sinnesael ◽  
Alfredo Loi ◽  
Marie-Pierre Dabard ◽  
Thijs R. A. Vandenbroucke ◽  
Philippe Claeys

Abstract. To expand traditional cyclostratigraphic numerical methods beyond their common technical limitations and apply them to truly deep-time archives we need to reflect on the development of new approaches to sedimentary archives that traditionally are not targeted for cyclostratigraphic analysis, but that frequently occur in the impoverished deep-time record. Siliciclastic storm-dominated shelf environments are a good example of such records. Our case study focusses on the Middle to Upper Ordovician siliciclastic successions of the Armorican Massif (western France), which are well-studied in terms of sedimentology and sequence stratigraphy. In addition, these sections are protected geological heritage due to the extraordinary quality of the outcrops. We therefore tested the performance of non-destructive high-resolution (cm-scale) portable X-ray fluorescence and natural gamma-ray analyses on outcrop to obtain major and trace element compositions. Despite the challenging outcrop conditions in the tidal beach zone, our geochemical analyses provide useful information regarding general lithology and several specific sedimentary features such as the detection of paleoplacers, or the discrimination between different types of diagenetic concretions such as nodules. Secondly, these new high-resolution data are used to experiment the application of commonly used numerical cyclostratigraphic techniques on this siliciclastic storm-dominated shelf environment, a non-traditional sedimentological setting for cyclostratigraphic analysis. In the lithological relatively homogenous parts of the section spectral power analyses and bandpass filtering hint towards a potential astronomical imprint of some sedimentary cycles, but this needs further confirmation in the absence of more robust independent age constraints.


Heart ◽  
2018 ◽  
Vol 105 (2) ◽  
pp. 110-110
Author(s):  
Takao Konishi ◽  
Hironori Murakami ◽  
Shinya Tanaka

Clinical introductionA 59-year-old woman visited an outpatient cardiology clinic due to shortness of breath on exertion. Physical examination showed no significant abnormality of vital signs. A III/VI systolic murmur was heard on the fourth intercostal space at the right sternal border. The majority of laboratory tests were normal. Chest X-ray showed a curved vessel shadow (figure 1A). Initial transthoracic echocardiography showed abnormal blood flow into the inferior vena cava (IVC) in the subxiphoid long axis view (figure 1B) and mild right heart dilatation (online supplementary figure 1). Transoesophageal echocardiography showed severe tricuspid regurgitation (online supplementary figure 2).Figure 1(A) Chest X-ray. (B) Colour Doppler image in the subxiphoid long axis view.Supplementary dataSupplementary dataQuestionWhat is the most likely underlying disease for the patient’s shortness of breath on exertion?Pulmonary arteriovenous fistula.Pulmonary arterial hypertension.Lung cancer.Partial anomalous pulmonary venous connection.Isolated tricuspid regurgitation.


2016 ◽  
Author(s):  
Katherine J. Dobson ◽  
Sophia B. Coban ◽  
Sam A. McDonald ◽  
Joanna Walsh ◽  
Robert Atwood ◽  
...  

2020 ◽  
pp. jgs2020-093
Author(s):  
Peter D. Clift ◽  
Amy L. Luther ◽  
Madison E. Avery ◽  
Paul B. O'Sullivan

Early Ordovician collision of the Lough Nafooey Arc (part of the Baie Verte Oceanic Tract) with the passive continental margin of Laurentia peaked at c. 475 Ma in Scotland and Ireland and was followed by subduction polarity reversal. We examined Upper Ordovician–Silurian sedimentary rocks from western Ireland to see whether collision was followed by renewed arc magmatism. Despite the scarcity of dated igneous intrusions between the Grampian (c. 470 Ma) and Acadian (c. 420 Ma) orogenies in Ireland, detrital zircons show a continuity of activity peaking at 480–440 Ma, implying no hiatus in regional magmatism. Differences in zircon U–Pb age spectra highlight the isolation of basins in the southern Killary Harbour area from those north of the South Mayo Trough. These latter rocks were largely derived by erosion from Moine and Upper Dalradian sources. By contrast, the Killary Harbour Basin shows a decreasing influence from the Dalradian after c. 436 Ma and an increasing influence of contemporaneous magmatic zircons. These were transported from sources along-strike from the present NE, probably at the southern end of the Scandian Mountains in SE Greenland. The western Irish basins formed as pull-apart basins in a forearc setting and are analogous to Cenozoic pull-apart basins in Sumatra.Supplementary material: U-Pb zircon analytical data is available at a decreasing influence from the Dalradian after c. 436 Ma and an increasing influence of contemporaneous https://doi.org/10.6084/m9.figshare.c.5209849


2014 ◽  
Vol 7 (6) ◽  
pp. 905-912 ◽  
Author(s):  
J. Kreiker ◽  
C. Andrada ◽  
M. Positieri ◽  
M. Gatani ◽  
E. Q. Crespo

The properties of peanut husk ashes as a potential supplementary material in cement mortars were studied in the laboratory. The ashes were prepared in an electric furnace at 500, 650 and 800 ºC during 180 minutes and used without further treatment. The characterization of ashes includes X-Ray fluorescence, X-Ray diffraction, SEM, and determination of pozzolanic activity by conductivity. The ashes were tested in mortars as partial substitute of Portland cement, in a rate of 15 % of substitution. The compression strength of mortars was evaluated between 7 and 120 days, for probes prepared using a proportion of cement:sand of 1:3 on weight with water/cement ratio of 0,5 v/v. It was observed that the calcinations conditions influenced the behavior of the ashes, giving better results the ashes obtained at 500 ºC. The compression tests showed values near to 70% at 7 days but higher than 80% after 28 days for mortars prepared with ashes, respect to the cement mortar reference.


Sign in / Sign up

Export Citation Format

Share Document