U–Pb detrital zircon constraints on active margin magmatism and sedimentation after the Grampian Orogeny in western Ireland

2020 ◽  
pp. jgs2020-093
Author(s):  
Peter D. Clift ◽  
Amy L. Luther ◽  
Madison E. Avery ◽  
Paul B. O'Sullivan

Early Ordovician collision of the Lough Nafooey Arc (part of the Baie Verte Oceanic Tract) with the passive continental margin of Laurentia peaked at c. 475 Ma in Scotland and Ireland and was followed by subduction polarity reversal. We examined Upper Ordovician–Silurian sedimentary rocks from western Ireland to see whether collision was followed by renewed arc magmatism. Despite the scarcity of dated igneous intrusions between the Grampian (c. 470 Ma) and Acadian (c. 420 Ma) orogenies in Ireland, detrital zircons show a continuity of activity peaking at 480–440 Ma, implying no hiatus in regional magmatism. Differences in zircon U–Pb age spectra highlight the isolation of basins in the southern Killary Harbour area from those north of the South Mayo Trough. These latter rocks were largely derived by erosion from Moine and Upper Dalradian sources. By contrast, the Killary Harbour Basin shows a decreasing influence from the Dalradian after c. 436 Ma and an increasing influence of contemporaneous magmatic zircons. These were transported from sources along-strike from the present NE, probably at the southern end of the Scandian Mountains in SE Greenland. The western Irish basins formed as pull-apart basins in a forearc setting and are analogous to Cenozoic pull-apart basins in Sumatra.Supplementary material: U-Pb zircon analytical data is available at a decreasing influence from the Dalradian after c. 436 Ma and an increasing influence of contemporaneous https://doi.org/10.6084/m9.figshare.c.5209849

2021 ◽  
pp. jgs2020-241
Author(s):  
Rob A. Strachan ◽  
Hugo K. H. Olierook ◽  
Christopher L. Kirkland

The provenance of Devonian Old Red Sandstone (ORS) continental successions in the northern Scottish Caledonides is poorly known: were they derived locally or from more distal sources? The integration of U-Pb and Hf isotope analyses in detrital zircon crystals reduces potential ambiguities arising from non-unique age populations and yields information on the crustal evolution of source terranes. Samples of basal ORS successions yield zircon U-Pb age groupings of c. 1800–1500 and c. 1200–900 Ma, with minor Neoarchaean, Tonian, Ediacaran and Ordovician contributions. SW Baltica provides the best match for detrital zircon ages and Hf isotopic signatures, and much of the >900 Ma zircon population was probably recycled from Neoproterozoic successions. εHf(t) values in c. 1800–1000 Ma grains reflect the assembly of Nuna, development of a long-lived retreating subduction system along its margin, and Grenville collisional orogenesis. These basal ORS successions were likely deposited within the same regional fluvial system as coeval sedimentary rocks in the Midland Valley, draining an area of positive relief in SW Baltica where continental convergence continued through the Early Devonian.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5301780


2020 ◽  
Vol 123 (3) ◽  
pp. 331-342
Author(s):  
T. Andersen ◽  
M.A. Elburg ◽  
J. Lehmann

Abstract Detrital zircon grains from three samples of sandstone from the Tswaane Formation of the Okwa Group of Botswana have been dated by U-Pb and analysed for Hf isotopes by multicollector LA-ICPMS. The detrital zircon age distribution pattern of the detrital zircons is dominated by a mid-Palaeoproterozoic age fraction (2 000 to 2 150 Ma) with minor late Archaean – early Palaeoproterozoic fractions. The 2 000 to 2 150 Ma zircon grains show a range of epsilon Hf from -12 to 0. The observed age and Hf isotope distributions overlap closely with those of sandstones of the Palaeoproterozoic Waterberg Group and Keis Supergroup of South Africa, but are very different from Neoproterozoic deposits in the region, and from the Takatswaane siltstone of the Okwa Group, all of which are dominated by detrital zircon grains younger than 1 950 Ma. The detrital zircon data indicate that the sources of Tswaane Formation sandstones were either Palaeoproterozoic rocks in the basement of the Kaapvaal Craton, or recycled Palaeoproterozoic sedimentary rocks similar to the Waterberg, Elim or Olifantshoek groups of South Africa. This implies a significant shift in provenance regime between the deposition of the Takatswaane and Tswaane formations. However, the detrital zircon data are also compatible with a completely different scenario in which the Tswaane Formation consists of Palaeoproterozoic sedimentary rock in tectonic rather than depositional contact with the other units of the Okwa Group.


Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-10
Author(s):  
Qian Liu ◽  
Guochun Zhao ◽  
Jianhua Li ◽  
Jinlong Yao ◽  
Yigui Han ◽  
...  

Abstract The location of the Tarim craton during the assembly and breakup of the Rodinia supercontinent remains enigmatic, with some models advocating a Tarim-Australia connection and others a location at the heart of the unified Rodinia supercontinent between Australia and Laurentia. In this study, our new zircon U-Pb dating results suggest that middle Neoproterozoic sedimentary rocks in the Altyn Tagh orogen of the southeastern Tarim craton were deposited between ca. 880 and 760 Ma in a rifting-related setting slightly prior to the breakup of Rodinia at ca. 750 Ma. A compilation of existing Neoproterozoic geological records also indicates that the Altyn Tagh orogen of the southeastern Tarim craton underwent collision at ca. 1.0-0.9 Ga and rifting at ca. 850-600 Ma related to the assembly and breakup of Rodinia. Furthermore, in order to establish the paleoposition of the Tarim craton with respect to Rodinia, available detrital zircon U-Pb ages and Hf isotopes from Meso- to Neoproterozoic sedimentary rocks were compiled. Comparable detrital zircon ages (at ca. 0.9, 1.3-1.1, and 1.7 Ga) and Hf isotopes indicate a close linkage among rocks of the southeastern Tarim craton, Cathaysia, and North India but exclude a northern or western Australian affinity. In addition, detrital zircons from the northern Tarim craton exhibit a prominent age peak at ca. 830 Ma with minor spectra at ca. 1.9 and 2.5 Ga but lack Mesoproterozoic ages, comparable to the northern and western Yangtze block. Together with comparable geological responses to the assembly and breakup of the Rodinia supercontinent, we offer a new perspective of the location of the Tarim craton between South China and North India in the periphery of Rodinia.


2020 ◽  
Author(s):  
Qian Liu

<p>Locating Tarim during assembly and breakup of Supercontinent Rodinia remains enigmatic, with different models advocating a Tarim-Australia linkage or a location between Australia and Laurentia at the heart of unified Rodinia. In this study, zircon U-Pb dating results first revealed middle Neoproterozoic sedimentary rocks in the Altyn Tagh orogen, southeastern Tarim. These sedimentary rocks were deposited between ca. 880 and 750 Ma in a rifting-related setting slightly prior to breakup of Rodinia at ca. 750 Ma. A compilation of Neoproterozoic geological records indicates that the Altyn Tagh orogen in southeastern Tarim underwent ca. 1.0-0.9 Ga collision and ca. 850-600 Ma rifting related to assembly and breakup of Rodinia, respectively. In order to place Tarim in Rodinia, available detrital zircon U-Pb ages and Hf isotopes from Meso- to Neoproterozoic sedimentary rocks in relevant Rodinia blocks are compiled. Comparable detrital zircon ages (at ca. 0.9, 1.3-1.1, and 1.7 Ga) and Hf isotopes indicate a close linkage among southeastern Tarim, Cathaysia, and North India, but rule out a North or West Australian affinity for Tarim. In addition, detrital zircons from northern Tarim exhibit a prominent age peak at ca. 830 Ma with minor spectra at ca. 1.9 and 2.5 Ga but lack Mesoproterozoic ages, which are comparable to those from northern and western Yangtze. Together with comparable geological responses to assembly and breakup of Rodinia, a new Tarim-South China-North India connection is inferred in the periphery of Rodinia.</p>


2020 ◽  
Vol 178 (1) ◽  
pp. jgs2020-022
Author(s):  
B.M. Spencer ◽  
J.R. Thigpen ◽  
R.D. Law ◽  
C.A. Mako ◽  
C.S. McDonald ◽  
...  

New 40Ar/39Ar thermochronological and deformation temperature analyses in the Scandian (c. 435–420 Ma) orogenic retrowedge of northern Scotland demonstrate accelerated cooling during late syn- to post-orogenic exhumation of the high-grade orogenic core. Initial cooling rates of 10–30°C myr−1 immediately following peak orogenesis transitioned to rapid rates of 45–90°C myr−1 during final exhumation of the Naver thrust sheet in the orogenic core. The flanking ductile thrust sheets exhibit a similar, albeit less pronounced, acceleration of cooling, with rates increasing by c. 150–300% following peak orogenesis. Closer to the foreland, the Moine thrust sheet did not experience increased cooling rates. Calculated unroofing rates of 3.75 mm a−1 in the high-grade Naver thrust sheet suggest increasing, rapid exhumation in the orogenic core during a presumed collapse phase of orogenesis. This is contrary to the expectation of decreasing erosional efficiency as topography is diminished and is interpreted to suggest that unroofing of the Scottish Caledonides may have been partially enhanced by upper crustal extensional deformation during ductile flow of the infrastructure of the orogenic core. Similar processes have been interpreted in the East Greenland Caledonides, which form the northern extension of the Scandian retrowedge.Supplementary material:40Ar/39Ar analytical data for muscovite (Supplementary Data Table 1), 40Ar/39Ar analytical data for amphibole (Supplementary Data Table 2), and electron microprobe analytical data for amphibole samples (Supplementary Data Table 3) is available at: https://doi.org/10.6084/m9.figshare.c.5087057


Author(s):  
Bingshuang Zhao ◽  
Xiaoping Long ◽  
Jin Luo ◽  
Yunpeng Dong ◽  
Caiyun Lan ◽  
...  

The crustal evolution of the Yangtze block and its tectonic affinity to other continents of Rodinia and subsequent Gondwana have not been well constrained. Here, we present new U-Pb ages and Hf isotopes of detrital zircons from the late Neoproterozoic to early Paleozoic sedimentary rocks in the northwestern margin of the Yangtze block to provide critical constraints on their provenance and tectonic settings. The detrital zircons of two late Neoproterozoic samples have a small range of ages (0.87−0.67 Ga) with a dominant age peak at 0.73 Ga, which were likely derived from the Hannan-Micangshan arc in the northwestern margin of the Yangtze block. In addition, the cumulative distribution curves from the difference between the depositional age and the crystalline age (CA−DA) together with the mostly positive εHf(t) values of these zircon crystals (−6.8 to +10.7, ∼90% zircon grains with εHf[t] > 0) suggest these samples were deposited in a convergent setting during the late Neoproterozoic. In contrast, the Cambrian−Silurian sediments share a similar detrital zircon age spectrum that is dominated by Grenvillian ages (1.11−0.72 Ga), with minor late Paleoproterozoic (ca. 2.31−1.71 Ga), Mesoarchean to Neoarchean (3.16−2.69 Ga), and latest Archean to early Paleoproterozoic (2.57−2.38 Ga) populations, suggesting a significant change in the sedimentary provenance and tectonic setting from a convergent setting after the breakup of Rodinia to an extensional setting during the assembly of Gondwana. However, the presence of abundant Grenvillian and Neoarchean ages, along with their moderately to highly rounded shapes, indicates a possible sedimentary provenance from exotic continental terrane(s). Considering the potential source areas around the Yangtze block when it was a part of Rodinia or Gondwana, we suggest that the source of these early Paleozoic sediments had typical Gondwana affinities, such as the Himalaya, north India, and Tarim, which is also supported by their stratigraphic similarity, newly published paleomagnetic data, and tectono-thermal events in the northern fragments of Gondwana. This implies that after prolonged subduction in the Neoproterozoic, the northwestern margin of the Yangtze block began to be incorporated into the assembly of Gondwana and then accept sediments from the northern margin of Gondwanaland in a passive continental margin setting.


2017 ◽  
Vol 54 (1) ◽  
pp. 15-32 ◽  
Author(s):  
Rasmus Haugaard ◽  
Luke Ootes ◽  
Larry M. Heaman ◽  
Michael A. Hamilton ◽  
Barry J. Shaulis ◽  
...  

Two temporally distinct Neoarchean turbidite packages are known to occur in the Slave craton. The older is a greywacke–mudstone succession that includes the renowned Burwash Formation (ca. 2661 Ma). In this study, a previously undated tuff bed is demonstrated to have crystallized at ca. 2650.5 ± 1.0 Ma refining the deposition age of these turbidites between ca. 2661 and 2650 Ma. The younger turbidites are locally distinctive as they contain interstratified banded iron formation (BIF). Previous work demonstrated that the younger turbidites were deposited between ca. 2640 and 2615 Ma, based entirely on maximum depositional ages from detrital zircons. A ∼3 cm thick felsic to intermediate tuff bed was discovered interbedded with these BIF-bearing turbidites. The tuff bed contains a single age population of zircon with a crystallization age of 2620 ± 6 Ma defining the depositional timing of these BIF-bearing turbidites. New U–Pb detrital zircon dates from extensive turbidite sequences in the eastern and central part of the Slave craton are also presented. We use the new and previously published results to recommend nomenclature for these extensive sedimentary rocks in the Slave craton. The ca. 2661–2650 Ma turbidites remain part of the previously ascribed Duncan Lake Group. The younger ca. 2620 Ma turbidites are assigned to the new Slemon Group. Where robust age-data exist, we recommend formation names and include type localities for each.


2021 ◽  
pp. jgs2021-040
Author(s):  
David R.M. Pattison ◽  
Shantal A. Goldsmith

The metamorphism of the Buchan block in northeast Scotland, and its relation to the Barrovian domain to its west, have been reassessed from consideration of mineral assemblages, microstructures, phase equilibrium modelling and monazite U-Pb geochronology. Zones of increasing metamorphic grade surround a central low grade domain (biotite zone) and define a northward-opening, U-shaped metamorphic map pattern ascribed to post-metamorphic folding. The eastern and southern Buchan domain show the classic Buchan-type prograde sequence cordierite – andalusite – sillimanite – migmatite/gneiss, representing a metamorphic field gradient of gently increasing pressure between 2.5-3.0 kbar, ∼550 °C and 3.5-4.0 kbar, ∼750 °C. A lower pressure metamorphic field gradient (by less than ∼0.5 kbar) is interpreted for the northeastern Buchan domain. The west Buchan domain shows a prograde sequence of staurolite+andalusite – sillimanite – gneiss/migmatite, representing a metamorphic field gradient higher by ∼1 kbar or less than the classic sequence. Uniquely in the northwestern Buchan domain is a staurolite-cordierite-andalusite domain in which staurolite-bearing schists are interpreted to have been overprinted by cordierite+andalusite assemblages. Monazite U-Pb geochronology of schists and gneisses from the Buchan block, including the Cowhythe and Ellon gneisses, yields ages in the range 470 ±5 Ma, supporting geological evidence that the gneisses are metamorphosed Dalradian strata rather than older basement gneisses. The metamorphic ages are similar to the ages of mafic igneous intrusions in the Buchan block, even though many of the exposed intrusions post-date the regional metamorphic zones. The Buchan metamorphic zones are truncated to the west by the Portsoy-Duchray Hill lineament (PDHL), a ductile shear zone that juxtaposes the Buchan rocks against higher-pressure, lower-temperature (kyanite-bearing) Barrovian schists to the west. A 2-15 km wide corridor of andalusite pseudomorphed by kyanite occurs between the PDHL and the Keith shear zone to its west. Monazite geochronology of the Barrovian rocks west of Portsoy shows little evidence of the c. 470 Ma signature of the Buchan block, instead yielding a dominant cluster of ages at c. 450 Ma and a more poorly defined grouping at c. 490 Ma.Supplementary materials: Analytical methods, thermodynamic modelling; tables S1-S13; figures S1-S5 are available at https://doi.org/10.6084/m9.figshare.c.5536745


2021 ◽  
Author(s):  
Bernard Bingen ◽  
Espen Torgersen ◽  
Morgan Ganerød

<p>Geological mapping, zircon U–Pb dating of 28 samples, and mica <sup>40</sup>Ar–<sup>39</sup>Ar dating of 7 samples in the Stavanger–Ryfylke region (Stavanger, Suldal, Nedstrand, Randøy) characterizes the tectonostratigraphy of the southernmost nappes in the Scandinavian Caledonides. Four main tectonostratigraphic levels are described. (1) The lowest phyllite/mica schist nappes –Buadalen, Holmasjø, Lower Finse, Synnfjell– represent the Cambro–Ordovician sediment cover of the Baltic margin. (2) The overlying nappes –Madla, Storheia, Dyrskard, Hallingskarvet– consist of felsic metaigneous rocks with a consistent age between c.1525 and 1493 Ma. They host c.1040 Ma intrusives and c.1025 Ma Sveconorwegian metamorphism. They likely represent transported Baltican (Sveconorwegian) basement, widely exposed in S Norway. (3) The overlying nappes –Sola, Boknafjord, Kvitenut, Revseggi– are more diverse and lack counterparts in the exposed Baltican crust. The Sola nappe, near Stavanger, comprises a marine succession –Kolnes succession– of mica schist, metasandstone, marble, amphibolite and felsic metavolcanic rocks. The metavolcanic rocks –Snøda metadacite–rhyolite– are fine-grained mica gneisses, with calc-alkaline composition. Their extrusion age of c.941–934 Ma date deposition of the sequence. Detrital zircons in a metasandstone sample (n=138) yield main age modes at c.1040, 1150 and 1395 Ma, as well as significant Paleoproterozoic and Archaean modes. The Kolnes succession was affected by Taconian/Grampian metamorphism peaking in eclogite-facies conditions between c.471 and 458 Ma (Smit et al., 2010), followed by regional cooling around 445–435 Ma. Leucogranite bodies (c.429 Ma) cut the Grampian fabric. Several <sup>40</sup>Ar–<sup>39</sup>Ar white mica and biotite plateau ages constrain the timing of Scandian top-to-the SE nappe stacking at c.420 Ma. The Boknafjord nappe in Nedstrand comprises a c.932 Ma augen gneiss, overlain successively by amphibolite and mica schist units. Preliminary detrital zircon data (n=11) imply an Ordovician (<459 Ma) deposition for the mica schist. (4) The highest nappes –Karmsund and Hardangerfjord– host the Karmøy and Bømlo ophiolite complexes. These complexes comprise a c.493 Ma supra subduction zone ophiolite, intruded by c.485–466 Ma volcanic arc plutonic rocks, and unconformably overlain by fossiliferous upper Ordovician (<c.445 Ma) clastic sediments (Pedersen and Dunning, 1997).</p><p>We propose that the Iapetan Karmøy–Bømlo ophiolite complexes were accreted onto the Kolnes succession on the Laurentian side of the Iapetus realm, during the Grampian orogeny, before integration of both in the Scandian nappe pile. The age of HP metamorphism in the Kolnes succession (471–458 Ma) matches the inferred timing for obduction of the Karmøy–Bømlo complexes (485–448 Ma). The evidence for a Laurentian margin obduction stems from a conspicuous similarity with Shetland. On Shetland, the c.492 Ma Unst–Fetlar ophiolite complex was obducted during the Grampian orogeny onto Neoproterozoic Laurentian marine sequences (psammite-marble-mica gneiss) of the Westing, Yell Sound and East Mainland successions. The Westing and Yell Sound successions are characterized by a c. 944–925 Ma, Renlandian, high-grade metamorphism, a dominant detrital zircon mode at 1030 Ma, and common Archean detrital zircons. They correlate well with the Kolnes succession and suggest an ancestry along the Neoproterozoic Renlandian active margin of Laurentia and Rodinia, before opening of Iapetus. </p>


2021 ◽  
pp. jgs2020-132
Author(s):  
Kai Weng ◽  
Yunpeng Dong ◽  
Xueyi Xu ◽  
Zhongping Ma ◽  
Bo Chen

The Carboniferous tectonic evolution of Western Junggar is crucial to understanding the subduction-accretion process of the Central Asian Orogenic Belt (CAOB), but the nature of this setting is still controversial. In this work, composite mineralogical, geochemical and detrital zircon U-Pb geochronological investigations have been conducted on Carboniferous clastic rocks in the Darbut region. The chemical compositions and sedimentary features show low sediment maturity and limited recycling, suggesting short-distance transportation and rapid accumulation. The samples contain igneous rock debris, mainly andesite and small amounts of basalt and granite, and a heavy mineral assemblage of Zr + Ap + Aug + Hbl + iron-bearing minerals (Hem-Lm, Ilm, Mag, and Py). The samples feature moderate ratios of Zr/Sc (average 15.47) and Th/Sc (average 0.61), and low ratios of La/Sc, Co/Th, and La/Th, as well as low Hf contents, suggesting intermediate to felsic arc-related igneous provenances. Detrital zircon grains from the clastic rocks show prominent age peaks in the Devonian and Carboniferous with positive εHf(t) values, indicating a consistent provenance associated with the Tiechanggou–Halaalate island arc. Combining the petrology, geochemistry and geochronology of the sedimentary and magmatic rocks, we conclude that the Darbut Carboniferous volcanic-sedimentary strata were deposited in a back-arc basin during ∼327-311Ma.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5357293


Sign in / Sign up

Export Citation Format

Share Document