scholarly journals The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6

Author(s):  
Mark J. Webb ◽  
Timothy Andrews ◽  
Alejandro Bodas-Salcedo ◽  
Sandrine Bony ◽  
Christopher S. Bretherton ◽  
...  

Abstract. The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, such as nonlinear change and regional changes in atmospheric circulation and precipitation. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions "How does the Earth System respond to forcing?" and "What are the origins and consequences of systematic model biases?" and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity. A compact set of Tier 1 experiments is proposed for CMIP6 to address the question: "(1) What are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks?" Additional Tier 2 experiments are proposed to address the following questions: (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (nonlinear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO2 forcing and sea surface warming? CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions: (1) How well do clouds and other relevant variables simulated by models agree with observations? (2) What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models? (3) Which models have the most credible representations of processes relevant to the simulation of clouds? (4) How do clouds and their changes interact with other elements of the climate system?

2017 ◽  
Vol 10 (1) ◽  
pp. 359-384 ◽  
Author(s):  
Mark J. Webb ◽  
Timothy Andrews ◽  
Alejandro Bodas-Salcedo ◽  
Sandrine Bony ◽  
Christopher S. Bretherton ◽  
...  

Abstract. The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud–climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions How does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. How well do clouds and other relevant variables simulated by models agree with observations?What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?Which models have the most credible representations of processes relevant to the simulation of clouds?How do clouds and their changes interact with other elements of the climate system?


2018 ◽  
Vol 31 (8) ◽  
pp. 3249-3264 ◽  
Author(s):  
Michael P. Byrne ◽  
Tapio Schneider

AbstractThe regional climate response to radiative forcing is largely controlled by changes in the atmospheric circulation. It has been suggested that global climate sensitivity also depends on the circulation response, an effect called the “atmospheric dynamics feedback.” Using a technique to isolate the influence of changes in atmospheric circulation on top-of-the-atmosphere radiation, the authors calculate the atmospheric dynamics feedback in coupled climate models. Large-scale circulation changes contribute substantially to all-sky and cloud feedbacks in the tropics but are relatively less important at higher latitudes. Globally averaged, the atmospheric dynamics feedback is positive and amplifies the near-surface temperature response to climate change by an average of 8% in simulations with coupled models. A constraint related to the atmospheric mass budget results in the dynamics feedback being small on large scales relative to feedbacks associated with thermodynamic processes. Idealized-forcing simulations suggest that circulation changes at high latitudes are potentially more effective at influencing global temperature than circulation changes at low latitudes, and the implications for past and future climate change are discussed.


2019 ◽  
Vol 5 (4) ◽  
pp. 372-389 ◽  
Author(s):  
Robert C. J. Wills ◽  
Rachel H. White ◽  
Xavier J. Levine

Abstract Purpose of Review Stationary waves are planetary-scale longitudinal variations in the time-averaged atmospheric circulation. Here, we consider the projected response of Northern Hemisphere stationary waves to climate change in winter and summer. We discuss how the response varies across different metrics, identify robust responses, and review proposed mechanisms. Recent Findings Climate models project shifts in the prevailing wind patterns, with corresponding impacts on regional precipitation, temperature, and extreme events. Recent work has improved our understanding of the links between stationary waves and regional climate and identified robust stationary wave responses to climate change, which include an increased zonal lengthscale in winter, a poleward shift of the wintertime circulation over the Pacific, a weakening of monsoonal circulations, and an overall weakening of stationary wave circulations, particularly their divergent component and quasi-stationary disturbances. Summary Numerous factors influence Northern Hemisphere stationary waves, and mechanistic theories exist for only a few aspects of the stationary wave response to climate change. Idealized studies have proven useful for understanding the climate responses of particular atmospheric circulation features and should be a continued focus of future research.


2020 ◽  
Vol 162 (2) ◽  
pp. 645-665
Author(s):  
Melissa S. Bukovsky ◽  
Linda O. Mearns

Abstract The climate sensitivity of global climate models (GCMs) strongly influences projected climate change due to increased atmospheric carbon dioxide. Reasonably, the climate sensitivity of a GCM may be expected to affect dynamically downscaled projections. However, there has been little examination of the effect of the climate sensitivity of GCMs on regional climate model (RCM) ensembles. Therefore, we present projections of temperature and precipitation from the ensemble of projections produced as a part of the North American branch of the international Coordinated Regional Downscaling Experiment (NA-CORDEX) in the context of their relationship to the climate sensitivity of their parent GCMs. NA-CORDEX simulations were produced at 50-km and 25-km resolutions with multiple RCMs which downscaled multiple GCMs that spanned nearly the full range of climate sensitivity available in the CMIP5 archive. We show that climate sensitivity is a very important source of spread in the NA-CORDEX ensemble, particularly for temperature. Temperature projections correlate with driving GCM climate sensitivity annually and seasonally across North America not only at a continental scale but also at a local-to-regional scale. Importantly, the spread in temperature projections would be reduced if only low, mid, or high climate sensitivity simulations were considered, or if only the ensemble mean were considered. Precipitation projections correlate with climate sensitivity, but only at a continental scale during the cold season, due to the increasing influence of other processes at finer scales. Additionally, it is shown that the RCMs do alter the projection space sampled by their driving GCMs.


1999 ◽  
Vol 23 (1) ◽  
pp. 57-78 ◽  
Author(s):  
Timothy D. Mitchell ◽  
Mike Hulme

Regional climate prediction is not an insoluble problem, but it is a problem characterized by inherent uncertainty. There are two sources of this uncertainty: the unpredictability of the climatic and global systems. The climate system is rendered unpredictable by deterministic chaos; the global system renders climate prediction uncertain through the unpredictability of the external forcings imposed on the climate system. It is commonly inferred from the differences between climate models on regional scales that the models are deficient, but climate system unpredictability is such that this inference is premature; the differences are due to an unresolved combination of climate system unpredictability and model deficiencies. Since model deficiencies are discussed frequently and the two sources of inherent uncertainty are discussed only rarely, this review considers the implications of climatic and global system unpredictability for regional climate prediction. Consequently we regard regional climate prediction as a cascade of uncertainty, rather than as a single result process sullied by model deficiencies. We suggest three complementary methodological approaches: (1) the use of multiple forcing scenarios to cope with global system unpredictability; (2) the use of ensembles to cope with climate system unpredictability; and (3) the consideration of the entire response of the climate system to cope with the nature of climate change. We understand regional climate change in terms of changes in the general circulations of the atmosphere and oceans; so we illustrate the role of uncertainty in the task of regional climate prediction with the behaviour of the North Atlantic thermohaline circulation. In conclusion we discuss the implications of the uncertainties in regional climate prediction for research into the impacts of climate change, and we recognize the role of feedbacks in complicating the relatively simple cascade of uncertainties presented here.


2021 ◽  
Vol 11 (5) ◽  
pp. 2403
Author(s):  
Daniel Ziche ◽  
Winfried Riek ◽  
Alexander Russ ◽  
Rainer Hentschel ◽  
Jan Martin

To develop measures to reduce the vulnerability of forests to drought, it is necessary to estimate specific water balances in sites and to estimate their development with climate change scenarios. We quantified the water balance of seven forest monitoring sites in northeast Germany for the historical time period 1961–2019, and for climate change projections for the time period 2010–2100. We used the LWF-BROOK90 hydrological model forced with historical data, and bias-adjusted data from two models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) downscaled with regional climate models under the representative concentration pathways (RCPs) 2.6 and 8.5. Site-specific monitoring data were used to give a realistic model input and to calibrate and validate the model. The results revealed significant trends (evapotranspiration, dry days (actual/potential transpiration < 0.7)) toward drier conditions within the historical time period and demonstrate the extreme conditions of 2018 and 2019. Under RCP8.5, both models simulate an increase in evapotranspiration and dry days. The response of precipitation to climate change is ambiguous, with increasing precipitation with one model. Under RCP2.6, both models do not reveal an increase in drought in 2071–2100 compared to 1990–2019. The current temperature increase fits RCP8.5 simulations, suggesting that this scenario is more realistic than RCP2.6.


2018 ◽  
Vol 22 (1) ◽  
pp. 673-687 ◽  
Author(s):  
Antoine Colmet-Daage ◽  
Emilia Sanchez-Gomez ◽  
Sophie Ricci ◽  
Cécile Llovel ◽  
Valérie Borrell Estupina ◽  
...  

Abstract. The climate change impact on mean and extreme precipitation events in the northern Mediterranean region is assessed using high-resolution EuroCORDEX and MedCORDEX simulations. The focus is made on three regions, Lez and Aude located in France, and Muga located in northeastern Spain, and eight pairs of global and regional climate models are analyzed with respect to the SAFRAN product. First the model skills are evaluated in terms of bias for the precipitation annual cycle over historical period. Then future changes in extreme precipitation, under two emission scenarios, are estimated through the computation of past/future change coefficients of quantile-ranked model precipitation outputs. Over the 1981–2010 period, the cumulative precipitation is overestimated for most models over the mountainous regions and underestimated over the coastal regions in autumn and higher-order quantile. The ensemble mean and the spread for future period remain unchanged under RCP4.5 scenario and decrease under RCP8.5 scenario. Extreme precipitation events are intensified over the three catchments with a smaller ensemble spread under RCP8.5 revealing more evident changes, especially in the later part of the 21st century.


2021 ◽  
Author(s):  
Giovanni Di Virgilio ◽  
Jason P. Evans ◽  
Alejandro Di Luca ◽  
Michael R. Grose ◽  
Vanessa Round ◽  
...  

&lt;p&gt;Coarse resolution global climate models (GCM) cannot resolve fine-scale drivers of regional climate, which is the scale where climate adaptation decisions are made. Regional climate models (RCMs) generate high-resolution projections by dynamically downscaling GCM outputs. However, evidence of where and when downscaling provides new information about both the current climate (added value, AV) and projected climate change signals, relative to driving data, is lacking. Seasons and locations where CORDEX-Australasia ERA-Interim and GCM-driven RCMs show AV for mean and extreme precipitation and temperature are identified. A new concept is introduced, &amp;#8216;realised added value&amp;#8217;, that identifies where and when RCMs simultaneously add value in the present climate and project a different climate change signal, thus suggesting plausible improvements in future climate projections by RCMs. ERA-Interim-driven RCMs add value to the simulation of summer-time mean precipitation, especially over northern and eastern Australia. GCM-driven RCMs show AV for precipitation over complex orography in south-eastern Australia during winter and widespread AV for mean and extreme minimum temperature during both seasons, especially over coastal and high-altitude areas. RCM projections of decreased winter rainfall over the Australian Alps and decreased summer rainfall over northern Australia are collocated with notable realised added value. Realised added value averaged across models, variables, seasons and statistics is evident across the majority of Australia and shows where plausible improvements in future climate projections are conferred by RCMs. This assessment of varying RCM capabilities to provide realised added value to GCM projections can be applied globally to inform climate adaptation and model development.&lt;/p&gt;


2021 ◽  
Author(s):  
Patrick Nistahl ◽  
Tim Müller ◽  
Gerhard Riedel ◽  
Hannes Müller-Thomy ◽  
Günter Meon

&lt;p&gt;Climate change impact studies performed for Northern Germany indicate a growing demand for water storage capacity to account for flood protection, low flow augmentation, drinking and agricultural water supply. At the same time, larger storage volumes for hydropower plants can be used to cope with the demands of changing energy supply from fossil to renewable energies. To tackle these challenges for the next decades, a novel reservoir system planning instrument is developed, which consists of combined numerical models and evaluation components. It allows to model simultaneously the current interconnected infrastructure of reservoirs as well as additional planning variants (structural and operational) as preparation for climate change. This planning instrument consists of a hydrological model and a detailed reservoir operation model.&lt;/p&gt;&lt;p&gt;As hydrological model, the conceptual, semi-distributed version of PANTA RHEI is applied. &amp;#160;Bias-corrected regional climate models (based on the RCP 8.5 scenario) are used as meteorological input. The hydrological model is coupled with a detailed reservoir operation model that replicates the complex rules of various interconnected reservoirs based on an hourly time step including pumped storage plants, which may have a subsurface reservoir as a lower basin. Downstream of the reservoirs, the hydrological model is used for routing the reservoir outflows and simulating natural side inflows. In areas of particular interest for flood protection, the hydrological routing is substituted with 2D hydraulic models to calculate the flood risk in terms of expected annual flood damage based on resulting inundation areas.&lt;/p&gt;&lt;p&gt;For the performance analysis, the simulation runs for all integrated modeling variants are evaluated for a reference period (1971-2000) and for future periods (2041-2070). Performance criteria involve flood protection, drinking water supply, low flow augmentation and energy production. These performance criteria will be used as stake holder information as well as a base for further optimization and ranking of the planning variants.&lt;/p&gt;&lt;p&gt;The combination of the hydrological model and the reservoir operation model shows a good performance of the existing complex hydraulic infrastructure using observed meteorological forcing as input. The usage of regional climate models as input shows a wide dispersion of several performance criteria, confirming the expected need for an innovative optimization scheme and the communication of the underlying uncertainties.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document