scholarly journals Air pollutant emissions from on-road traffic and air quality impact assessment

2019 ◽  
Author(s):  
Anonymous
Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 695
Author(s):  
Marek Bogacki ◽  
Robert Oleniacz ◽  
Mateusz Rzeszutek ◽  
Paulina Bździuch ◽  
Adriana Szulecka ◽  
...  

One of the elements of strategy aimed at minimizing the impact of road transport on air quality is the introduction of its reorganization resulting in decreased pollutant emissions to the air. The aim of the study was to determine the optimal strategy of corrective actions in terms of the air pollutant emissions from road transport. The study presents the assessment results of the emission reduction degree of selected pollutants (PM10, PM2.5, and NOx) as well as the impact evaluation of this reduction on their concentrations in the air for adopted scenarios of the road management changes for one of the street canyons in Krakow (Southern Poland). Three scenarios under consideration of the city authorities were assessed: narrowing the cross-section of the street by eliminating one lane in both directions, limiting the maximum speed from 70 km/h to 50 km/h, and allowing only passenger and light commercial vehicles on the streets that meet the Euro 4 standard or higher. The best effects were obtained for the variant assuming banning of vehicles failing to meet the specified Euro standard. It would result in a decrease of the yearly averaged PM10 and PM2.5 concentrations by about 8–9% and for NOx by almost 30%.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 562
Author(s):  
Jorge Moreda-Piñeiro ◽  
Joel Sánchez-Piñero ◽  
María Fernández-Amado ◽  
Paula Costa-Tomé ◽  
Nuria Gallego-Fernández ◽  
...  

Due to the exponential growth of the SARS-CoV-2 pandemic in Spain (2020), the Spanish Government adopted lockdown measures as mitigating strategies to reduce the spread of the pandemic from 14 March. In this paper, we report the results of the change in air quality at two Atlantic Coastal European cities (Northwest Spain) during five lockdown weeks. The temporal evolution of gaseous (nitrogen oxides, comprising NOx, NO, and NO2; sulfur dioxide, SO2; carbon monoxide, CO; and ozone, O3) and particulate matter (PM10; PM2.5; and equivalent black carbon, eBC) pollutants were recorded before (7 February to 13 March 2020) and during the first five lockdown weeks (14 March to 20 April 2020) at seven air quality monitoring stations (urban background, traffic, and industrial) in the cities of A Coruña and Vigo. The influences of the backward trajectories and meteorological parameters on air pollutant concentrations were considered during the studied period. The temporal trends indicate that the concentrations of almost all species steadily decreased during the lockdown period with statistical significance, with respect to the pre-lockdown period. In this context, great reductions were observed for pollutants related mainly to fossil fuel combustion, road traffic, and shipping emissions (−38 to −78% for NO, −22 to −69% for NO2, −26 to −75% for NOx, −3 to −77% for SO2, −21% for CO, −25 to −49% for PM10, −10 to −38% for PM2.5, and −29 to −51% for eBC). Conversely, O3 concentrations increased from +5 to +16%. Finally, pollutant concentration data for 14 March to 20 April of 2020 were compared with those of the previous two years. The results show that the overall air pollutants levels were higher during 2018–2019 than during the lockdown period.


2021 ◽  
Vol 7 (3) ◽  
pp. eabd6696
Author(s):  
Zongbo Shi ◽  
Congbo Song ◽  
Bowen Liu ◽  
Gongda Lu ◽  
Jingsha Xu ◽  
...  

The COVID-19 lockdowns led to major reductions in air pollutant emissions. Here, we quantitatively evaluate changes in ambient NO2, O3, and PM2.5 concentrations arising from these emission changes in 11 cities globally by applying a deweathering machine learning technique. Sudden decreases in deweathered NO2 concentrations and increases in O3 were observed in almost all cities. However, the decline in NO2 concentrations attributable to the lockdowns was not as large as expected, at reductions of 10 to 50%. Accordingly, O3 increased by 2 to 30% (except for London), the total gaseous oxidant (Ox = NO2 + O3) showed limited change, and PM2.5 concentrations decreased in most cities studied but increased in London and Paris. Our results demonstrate the need for a sophisticated analysis to quantify air quality impacts of interventions and indicate that true air quality improvements were notably more limited than some earlier reports or observational data suggested.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Nico Kuehnel ◽  
Dominik Ziemke ◽  
Rolf Moeckel

Road traffic is a common source of negative environmental externalities such as noise and air pollution. While existing transport models are capable of accurately representing environmental stressors of road traffic, this is less true for integrated land-use/transport models. So-called land-use-transport-environment models aim to integrate environmental impacts. However, the environmental implications are often analyzed as an output of the model only, even though research suggests that the environment itself can have an impact on land use. The few existing models that actually introduce a feedback between land-use and environment fall back on aggregated zonal values. This paper presents a proof of concept for an integrated, microscopic and agent-based approach for a feedback loop between transport-related noise emissions and land-use. The results show that the microscopic link between the submodels is operational and fine-grained analysis by different types of agents is possible. It is shown that high-income households react differently to noise exposure when compared low-income households. The presented approach opens new possibilities for analyzing and understanding noise abatement policies as well as issues of environmental equity. The methodology can be transferred to include air pollutant emissions in the future.


2021 ◽  
Vol 9 ◽  
Author(s):  
Rafał Blazy ◽  
Jakub Błachut ◽  
Agnieszka Ciepiela ◽  
Rita Łabuz ◽  
Renata Papież

The premise for the selection of the topic discussed in this article is the lack of research on the level of reduction of air pollutant emissions by the use of photovoltaic micro-installations in single-family buildings, both in Poland and other countries of Central and Eastern Europe. Therefore, the Authors made an attempt to estimate the scale of air pollution reduction (in particular CO2) in the area of the urbanized Metropolitan area of Krakow, which is one of the most polluted regions in Poland. The installation of photovoltaic panels on single-family buildings, co-financed by the government My Electricity Program, is the investment cost in improving the air quality in this region, and thus increasing the well-being of its inhabitants.


2017 ◽  
Vol 10 (9) ◽  
pp. 3255-3276 ◽  
Author(s):  
Augustin Colette ◽  
Camilla Andersson ◽  
Astrid Manders ◽  
Kathleen Mar ◽  
Mihaela Mircea ◽  
...  

Abstract. The EURODELTA-Trends multi-model chemistry-transport experiment has been designed to facilitate a better understanding of the evolution of air pollution and its drivers for the period 1990–2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional-scale air quality. The present paper formulates the main scientific questions and policy issues being addressed by the EURODELTA-Trends modelling experiment with an emphasis on how the design and technical features of the modelling experiment answer these questions. The experiment is designed in three tiers, with increasing degrees of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000, and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emissions, (ii) chemical boundary conditions, and (iii) meteorology complements it. The most demanding tier consists of two complete time series from 1990 to 2010, simulated using either time-varying emissions for corresponding years or constant emissions. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and five models have – to date – completed the full set of simulations (and 21-year trend calculations have been performed by four models). The modelling results are publicly available for further use by the scientific community. The main expected outcomes are (i) an evaluation of the models' performances for the three reference years, (ii) an evaluation of the skill of the models in capturing observed air pollution trends for the 1990–2010 time period, (iii) attribution analyses of the respective role of driving factors (e.g. emissions, boundary conditions, meteorology), (iv) a dataset based on a multi-model approach, to provide more robust model results for use in impact studies related to human health, ecosystem, and radiative forcing.


2018 ◽  
Vol 10 (10) ◽  
pp. 3510 ◽  
Author(s):  
Javier Delso ◽  
Belén Martín ◽  
Emilio Ortega

Road traffic is the most important contributor to noise and air pollutant emissions in cities. Its substitution by non-motorized modes therefore has great potential to improve the urban environment while increasing levels of physical activity among the population. This paper identifies car trips that could potentially be transferred to active modes such as walking and cycling, and analyses the barriers perceived by people who travel by car. We detect potentially replaceable car trips based on a mobility survey, distance calculation, and a distance threshold approach. The answers to a set of questions in the mobility survey allow us to identify the perceived barriers for use of the bicycle, applied to Vitoria-Gasteiz (Spain). The results show that between 30% and 40% of car trips could be replaced by active modes. Personal safety and distance results are the most limiting barriers perceived by car users, while physical condition and technique are the most limiting ones for bicycle users. These results provide valuable information for implementing measures to promote the replacement of motorized trips with walking and cycling.


2017 ◽  
Author(s):  
Lei Zhang ◽  
Tianliang Zhao ◽  
Sunling Gong ◽  
Shaofei Kong ◽  
Lili Tang ◽  
...  

Abstract. Air pollutant emissions play a determinant role in deteriorating air quality. However, an uncertainty in emission inventories is still the key problem for modeling air pollution. In this study, an updated emission inventory of coal-fired power plants (UEIPP) based on online monitoring data in Jiangsu province of East China for the year of 2012 was implemented in the widely used Multi-resolution Emission Inventory for China (MEIC). By employing the Weather Research and Forecasting Model with Chemistry (WRF-Chem), two simulations were executed to assess the atmospheric environmental change by using the original MEIC emission inventory and the MEIC inventory with the UEIPP. A synthetic analysis shows that (1) compared to the power emissions of MEIC, PM2.5, PM10, SO2 and NOx were lower, and CO, black carbon (BC), organic carbon (OC) and NMVOCs were higher in the UEIPP, reflecting a large discrepancy in the power emissions over East China; (2) In accordance with the changes of UEIPP, the modeled concentrations were reduced for SO2 and NO2, and increased for most areas of primary OC, BC and CO, whose concentrations in atmosphere are highly dependent on emission changes. (3) Interestingly, when the UEIPP was used, the atmospheric oxidizing capacity significantly reinforced, reflecting by increased oxidizing agents, e.g. O3 and OH, thus directly strengthened the chemical production from SO2 and NOx to sulfate and nitrate, which offset the reduction of primary PM2.5 emissions especially in the haze days. This study indicated the importance of updating air pollutant emission inventories in simulating the complex atmospheric environment changes with the implications on air quality and environmental changes.


Author(s):  
Mayra Chavez ◽  
Wen-Whai Li

Residents living in near-road communities are exposed to traffic-related air pollutants, which can adversely affect their health. Near-road communities are expected to observe significant spatial and temporal variations in pollutant concentrations. Determining these variations in the surrounding areas can help raise awareness among government agencies of these underserved communities living near highways. This study conducted traffic and air quality measurements along with emission and dispersion modeling of the exposure to transportation emissions of a near-road urban community adjacent to the US 54 highway (US 54), with annual average daily traffic (AADT) of 107,237. The objectives of this study were (i) to develop spatial and temporal patterns of pollutant concentration variation and (ii) to apportion the differences in exposure concentrations to background concentrations and those that are contributed from major highways. It was observed that: (a) particulate matter (PM2.5) in near-road communities is dominated by the regional background concentrations which account for more than 85% of the pollution; and (b) only near-road receptors are affected by the traffic-related air pollutant emissions from major highways while spatial and temporal variations of PM2.5 concentrations in near-road communities are less influenced by local traffic, subsiding rapidly to negligible concentrations at 300 m from the road. Modeled PM2.5 concentrations were compared with monitored data. For better air quality impact assessments, higher quality data such as time-specific traffic volume and fleet information as well as site-specific meteorological data could help yield more accurate concentration predictions. Modeled-to-monitored comparison shows that air quality in near-road communities is dominated by regional background concentrations.


2016 ◽  
Vol 113 (28) ◽  
pp. 7756-7761 ◽  
Author(s):  
Jun Liu ◽  
Denise L. Mauzerall ◽  
Qi Chen ◽  
Qiang Zhang ◽  
Yu Song ◽  
...  

As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m−3 (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m−3; mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m−3 (40 ± 9% of 67 ± 41 μg⋅m−3), 44 ± 27 μg⋅m−3 (43 ± 10% of 99 ± 54 μg⋅m−3), and 25 ± 14 μg⋅m−3 (35 ± 8% of 70 ± 35 μg⋅m−3) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level.


Sign in / Sign up

Export Citation Format

Share Document