scholarly journals ML-SWAN-v1: a hybrid machine learning framework for the prediction of daily surface water nutrient concentrations

2020 ◽  
Author(s):  
Benya Wang ◽  
Matthew R. Hipsey ◽  
Carolyn Oldham

Abstract. Nutrient data from catchments discharging to receiving waters are necessary to monitor and manage water quality, however, they are often sparse in time and space and have non-linear responses to environmental factors, making it difficult to systematically analyse long- and short-term trends and undertake nutrient budgets. To address these challenges, we developed a hybrid machine learning (ML) framework that first separated baseflow and quickflow from total flow, and then generated data for missing nutrient species, using relationships with hydrological data, rainfall, and temporal data. The generated nutrient data were then included as additional variables in a final simulation of tributary water quality. Hybrid random forest (RF) and gradient boosting machines (GBM) models were employed and their performance compared with a linear model, a multivariate weighted regression model and stand-alone RF and GBM models that did not pre-generate nutrient data. The six models were used to predict TN, TP, NH3, dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and filterable reactive phosphorus (FRP) discharged from two study sites in Western Australia: Ellen Brook (small and ephemeral) and the Murray River (large and perennial). Our results showed that the hybrid RF and GBM models had significantly higher accuracy and lower prediction uncertainty for almost all nutrient species across the two sites. We demonstrated that the hybrid model provides a flexible method to combine data of varied resolution and quality, and is accurate for the prediction of responses of surface water nutrient concentrations to hydrologic variability.

2020 ◽  
Vol 13 (9) ◽  
pp. 4253-4270
Author(s):  
Benya Wang ◽  
Matthew R. Hipsey ◽  
Carolyn Oldham

Abstract. Nutrient data from catchments discharging to receiving waters are monitored for catchment management. However, nutrient data are often sparse in time and space and have non-linear responses to environmental factors, making it difficult to systematically analyse long- and short-term trends and undertake nutrient budgets. To address these challenges, we developed a hybrid machine learning (ML) framework that first separated baseflow and quickflow from total flow, generated data for missing nutrient species, and then utilised the pre-generated nutrient data as additional variables in a final simulation of tributary water quality. Hybrid random forest (RF) and gradient boosting machine (GBM) models were employed and their performance compared with a linear model, a multivariate weighted regression model, and stand-alone RF and GBM models that did not pre-generate nutrient data. The six models were used to predict six different nutrients discharged from two study sites in Western Australia: Ellen Brook (small and ephemeral) and the Murray River (large and perennial). Our results showed that the hybrid RF and GBM models had significantly higher accuracy and lower prediction uncertainty for almost all nutrient species across the two sites. The pre-generated nutrient and hydrological data were highlighted as the most important components of the hybrid model. The model results also indicated different hydrological transport pathways for total nitrogen (TN) export from two tributary catchments. We demonstrated that the hybrid model provides a flexible method to combine data of varied resolution and quality and is accurate for the prediction of responses of surface water nutrient concentrations to hydrologic variability.


2003 ◽  
Vol 38 (2) ◽  
pp. 335-359 ◽  
Author(s):  
Gerald R. Ontkean ◽  
David S. Chanasyk ◽  
Sandi Riemersma ◽  
D. Rodney Bennett ◽  
Jerry M. Brunen

Abstract A three-year study was conducted to examine the effects of a prairie wetland enhanced for waterfowl habitat on surface water quality in the Crowfoot Creek watershed in southern Alberta, Canada. Monitoring was carried out at the Hilton wetland from mid-March to the end of October in 1997 to 1999 at two inflow sites and one outflow site. Data were collected on flow, total phosphorus (TP), total nitrogen (TN), total suspended solids (TSS), and fecal coliform (FC) bacteria. Nutrient concentrations were highest in the spring, and decreased during the remainder of the monitoring period each year. Nutrient concentrations did not change significantly within the wetland due to the form of nutrient, reduced retention times for nutrient uptake, and the addition of nutrients to the water through sediment release and decomposition of organic matter. The wetland acted as both a source and a sink for nutrients, depending on flow volumes. TSS concentrations decreased significantly from inflow to outflow, indicating sedimentation occurred in the wetland. FC bacteria levels were lowest in the spring and increased during the post-spring runoff (PSRO) period. FC bacteria counts decreased significantly within the wetland throughout the entire year. The Hilton wetland was effective in reducing the amounts of TSS and FC bacteria exported from the wetland; however, there was no significant change in nutrient status.


2020 ◽  
Vol 721 ◽  
pp. 137612 ◽  
Author(s):  
Duie Tien Bui ◽  
Khabat Khosravi ◽  
John Tiefenbacher ◽  
Hoang Nguyen ◽  
Nerantzis Kazakis

Author(s):  
Md. Motaharul Islam ◽  
Mst. Taslema Nasrin ◽  
Md. Mofizul Islam

A research was carried out to assess the suitability of surface water for irrigation purposes. For this reason, 56 samples of surface water were collected from each union of Dinajpur sadar upazilla, Dinajpur. The analysis was included pH, EC, TDS, Ca, Mg, S, P, Na, K, Cl- and HCO3- to evaluate the suitability of surface water for irrigation purposes. Almost all the water samples were within the recommended pH value for irrigation and a great impact on crop production. With respect to electrical conductivity (EC) samples were low to medium salinity. For total dissolved solids (TDS), all samples were considered as freshwater for irrigation. On the basis of Ca, Mg, S, P, Na, K, Cl- and HCO3- all samples could safely be used for irrigation and would not affect the soils.


Author(s):  
Hemant Raheja ◽  
Arun Goel ◽  
Mahesh Pal

Abstract The present paper deals with performance evaluation of application of three machine learning algorithms such as Deep neural network (DNN), Gradient boosting machine (GBM) and Extreme gradient boosting (XGBoost) to evaluate the ground water indices over a study area of Haryana state (India). To investigate the applicability of these models, two water quality indices namely Entropy Water Quality Index (EWQI) and Water Quality Index (WQI) are employed in the present study. Analysis of results demonstrated that DNN has exhibited comparatively lower error values and it performed better in the prediction of both indices i.e. EWQI and WQI. The values of Correlation Coefficient (CC = 0.989), Root Mean Square Error (RMSE = 0.037), Nash–Sutcliffe efficiency (NSE = 0.995), Index of agreement (d = 0.999) for EWQI and CC = 0.975, RMSE = 0.055, NSE = 0.991, d = 0.998 for WQI have been obtained. From variable importance of input parameters, the Electrical conductivity (EC) was observed to be most significant and ‘pH’ was least significant parameter in predictions of EWQI and WQI using these three models. It is envisaged that the results of study can be used to righteously predict EWQI and WQI of groundwater to decide its potability.


2015 ◽  
Vol 40 (3) ◽  
Author(s):  
Tuğba Şentürk ◽  
Şükran Yıldız

AbstractObjective: This present investigation aimed at assessing the water quality of the Gediz River located in western Turkey.Methods: Some physicochemical parameters and nutrient concentrations of the surface water of Gediz River were determined over a period of twelve months (October to September 2012) at 5 sampling sites along the river.Results: Data on some ions namely NHConclusion: This indicates pollution of the river water samples from the areas studied. Our findings highlighted the deterioration of water quality of the river due to anthropogenic and agriculturel activities.


2012 ◽  
Vol 12 (4) ◽  
pp. 439-450
Author(s):  
Yong Qiu ◽  
Hanchang Shi ◽  
He Jing ◽  
Rui Liu ◽  
Qiang Cai ◽  
...  

Lake Taihu in China is a eutrophicated lake surrounded by industrial and urbanized zones, thus its water quality often suffers from organic and nutrient contaminants. In this paper, a 1 year water quality survey was conducted around the lake and statistical analysis tools were used to characterize the variations of organic pollutants. Analysis of variance (ANOVA), cluster analysis and principal component analysis (PCA) confirm the seasonal and spatial variations of surface water quality in Lake Taihu. Surface water quality is better during the wet season and worse downstream during the dry season. The dissolved organic matter was further analyzed using a parallel factor analysis (PARAFAC) model with three-dimensional excitation-emission fluorescence matrices. Four components were extracted from the fluorescence data, namely, two autochthonous biodegradation products (C1: amino acids, C4: protein-like materials) and two humic-like substances (C2: from microbial processing, C3: terrestrial). C1 and C4 were dominant in the chromophoric dissolved organic matter (CDOM) fluorophores; this result is similar to those of other inland water bodies in China. The CDOM fluorophores showed similar seasonal and spatial variations with common water quality indices, with the exception of the seasonal responses of C2 in winter. Bivariance correlations between the organic and nutrient concentrations and the fluorescence intensities of the CDOM fluorophores imply possible common sources of the different contaminants. This paper exemplifies advanced statistical methods as a useful tool in understanding the behavior of contaminants in inland fresh water systems.


Author(s):  
Mohit Sharma ◽  
R Sivaperumal

The surface water forms the lifeline of almost all the human activities. The water pollution, inflow of solid waste, dumping of garbage in the drains and eroded soil, silt deposited in the natural drainage are major threat to surface water. The studies focusing on the assessment of changes in the river hydrology, morphology and water quality. The methodology used in the study involved assessment of Ghaziabad district water quality from six different locations for a period of one year 2016-17 in monsoon, winter and summer seasons. The parameters observed are Temperature, pH, Turbidity, Total Hardness (T-H), Calcium Hardness.


Sign in / Sign up

Export Citation Format

Share Document