scholarly journals Optimising the FAMOUS climate model: inclusion of global carbon cycling

2013 ◽  
Vol 6 (1) ◽  
pp. 141-160 ◽  
Author(s):  
J. H. T. Williams ◽  
R. S. Smith ◽  
P. J. Valdes ◽  
B. B. B. Booth ◽  
A. Osprey

Abstract. FAMOUS fills an important role in the hierarchy of climate models, both explicitly resolving atmospheric and oceanic dynamics yet being sufficiently computationally efficient that either very long simulations or large ensembles are possible. An improved set of carbon cycle parameters for this model has been found using a perturbed physics ensemble technique. This is an important step towards building the "Earth System" modelling capability of FAMOUS, which is a reduced resolution, and hence faster running, version of the Hadley Centre Climate model, HadCM3. Two separate 100 member perturbed parameter ensembles were performed; one for the land surface and one for the ocean. The land surface scheme was tested against present-day and past representations of vegetation and the ocean ensemble was tested against observations of nitrate. An advantage of using a relatively fast climate model is that a large number of simulations can be run and hence the model parameter space (a large source of climate model uncertainty) can be more thoroughly sampled. This has the associated benefit of being able to assess the sensitivity of model results to changes in each parameter. The climatologies of surface and tropospheric air temperature and precipitation are improved relative to previous versions of FAMOUS. The improved representation of upper atmosphere temperatures is driven by improved ozone concentrations near the tropopause and better upper level winds.

2012 ◽  
Vol 5 (4) ◽  
pp. 3089-3129
Author(s):  
J. H. T. Williams ◽  
R. S. Smith ◽  
P. J. Valdes ◽  
B. B. B. Booth ◽  
A. Osprey

Abstract. FAMOUS fills an important role in the hierarchy of climate models, both explicitly resolving atmospheric and oceanic dynamics yet being sufficiently computationally efficient that either very long simulations or large ensembles are possible. An improved set of carbon cycle parameters for this model has been found using a perturbed physics ensemble technique. This is an important step towards building the "Earth System" modelling capability of FAMOUS, which is a reduced resolution, and hence faster running, version of the Hadley Centre Climate model, HadCM3. Two separate 100 member perturbed parameter ensembles were performed; one for the land surface and one for the ocean. The land surface scheme was tested against present day and past representations of vegetation and the ocean ensemble was tested against observations of nitrate. An advantage of using a relatively fast climate model is that a large number of simulations can be run and hence the model parameter space (a large source of climate model uncertainty) can be more thoroughly sampled. This has the associated benefit of being able to assess the sensitivity of model results to changes in each parameter. The climatologies of surface and tropospheric air temperature and precipitation are improved relative to previous versions of FAMOUS. The improved representation of upper atmosphere temperatures is driven by improved ozone concentrations near the tropopause and better upper level winds.


2008 ◽  
Vol 5 (6) ◽  
pp. 3099-3128 ◽  
Author(s):  
E. P. Maurer ◽  
J. C. Adam ◽  
A. W. Wood

Abstract. Temperature and precipitation from 16 climate models each using two emissions scenarios (lower B1 and mid-high A2) were used to characterize the range of potential climate changes for the Rio Lempa basin of Central America during the middle (2040–2069) and end (2070–2099) of the 21st century. A land surface model was applied to investigate the hydrologic impacts of these changes, focusing on inflow to two major hydropower reservoirs. By 2070–2099 the median warming relative to 1961–1990 was 1.9°C and 3.4°C under B1 and A2 emissions, respectively. For the same periods, the models project median precipitation decreases of 5.0% (B1) and 10.4% (A2). Median changes by 2070–2099 in reservoir inflow were 13% (B1) and 24% (A2), with largest flow reductions during the rising limb of the seasonal hydrograph, from June through September. Frequency of low flow years increases, implying decreases in firm hydropower capacity of 33% to 53% by 2070–2099.


2009 ◽  
Vol 13 (2) ◽  
pp. 183-194 ◽  
Author(s):  
E. P. Maurer ◽  
J. C. Adam ◽  
A. W. Wood

Abstract. Temperature and precipitation from 16 climate models each using two emissions scenarios (lower B1 and mid-high A2) were used to characterize the range of potential climate changes for the Rio Lempa basin of Central America during the middle (2040–2069) and end (2070–2099) of the 21st century. A land surface model was applied to investigate the hydrologic impacts of these changes, focusing on inflow to two major hydropower reservoirs. By 2070–2099 the median warming relative to 1961–1990 was 1.9°C and 3.4°C under B1 and A2 emissions, respectively. For the same periods, the models project median precipitation decreases of 5.0% (B1) and 10.4% (A2). Median changes by 2070–2099 in reservoir inflow were 13% (B1) and 24% (A2), with largest flow reductions during the rising limb of the seasonal hydrograph, from June through September. Frequency of low flow years increases, implying decreases in firm hydropower capacity of 33% to 53% by 2070–2099.


2021 ◽  
Author(s):  
Laura Suarez-Gutierrez ◽  
Sebastian Milinski ◽  
Nicola Maher

<p>We use a methodological framework exploiting the power of large ensembles to evaluate how well ten coupled climate models represent the internal variability and response to external forcings in observed historical surface temperatures. This evaluation framework allows us to directly attribute discrepancies between models and observations to biases in the simulated internal variability or forced response, without relying on assumptions to separate these signals in observations. The largest discrepancies result from the overestimated forced warming in some models during recent decades. In contrast, models do not systematically over- or underestimate internal variability in global mean temperature. On regional scales, all models misrepresent surface temperature variability over the Southern Ocean, while overestimating variability over land-surface areas, such as the Amazon and South Asia, and high-latitude oceans. Our evaluation shows that MPI-GE, followed by GFDL-ESM2M and CESM-LE offer the best global and regional representation of both the internal variability and forced response in observed historical temperatures.</p>


2017 ◽  
Vol 10 (2) ◽  
pp. 889-901 ◽  
Author(s):  
Daniel J. Lunt ◽  
Matthew Huber ◽  
Eleni Anagnostou ◽  
Michiel L. J. Baatsen ◽  
Rodrigo Caballero ◽  
...  

Abstract. Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high ( >  800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene ( ∼  50  Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4 ×  CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP – the Deep-time Model Intercomparison Project, itself a group within the wider Paleoclimate Modelling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.


2021 ◽  
Vol 17 (4) ◽  
pp. 1665-1684
Author(s):  
Leonore Jungandreas ◽  
Cathy Hohenegger ◽  
Martin Claussen

Abstract. Global climate models experience difficulties in simulating the northward extension of the monsoonal precipitation over north Africa during the mid-Holocene as revealed by proxy data. A common feature of these models is that they usually operate on grids that are too coarse to explicitly resolve convection, but convection is the most essential mechanism leading to precipitation in the West African Monsoon region. Here, we investigate how the representation of tropical deep convection in the ICOsahedral Nonhydrostatic (ICON) climate model affects the meridional distribution of monsoonal precipitation during the mid-Holocene by comparing regional simulations of the summer monsoon season (July to September; JAS) with parameterized and explicitly resolved convection. In the explicitly resolved convection simulation, the more localized nature of precipitation and the absence of permanent light precipitation as compared to the parameterized convection simulation is closer to expectations. However, in the JAS mean, the parameterized convection simulation produces more precipitation and extends further north than the explicitly resolved convection simulation, especially between 12 and 17∘ N. The higher precipitation rates in the parameterized convection simulation are consistent with a stronger monsoonal circulation over land. Furthermore, the atmosphere in the parameterized convection simulation is less stably stratified and notably moister. The differences in atmospheric water vapor are the result of substantial differences in the probability distribution function of precipitation and its resulting interactions with the land surface. The parametrization of convection produces light and large-scale precipitation, keeping the soils moist and supporting the development of convection. In contrast, less frequent but locally intense precipitation events lead to high amounts of runoff in the explicitly resolved convection simulations. The stronger runoff inhibits the moistening of the soil during the monsoon season and limits the amount of water available to evaporation in the explicitly resolved convection simulation.


2019 ◽  
Vol 15 (5) ◽  
pp. 1691-1713 ◽  
Author(s):  
Stephen J. Hunter ◽  
Alan M. Haywood ◽  
Aisling M. Dolan ◽  
Julia C. Tindall

Abstract. We present the UK's input into the Pliocene Model Intercomparison Project phase 2 (PlioMIP2) using the Hadley Centre Climate Model version 3 (HadCM3). The 400 ppm CO2 Pliocene experiment has a mean annual surface air temperature that is 2.9 ∘C warmer than the pre-industrial and a polar amplification of between 1.7 and 2.2 times the global mean warming. The Pliocene Research Interpretation and Synoptic Mapping (PRISM4) enhanced Pliocene palaeogeography accounts for a warming of 1.4 ∘C, whilst the CO2 increase from 280 to 400 ppm leads to a further 1.5 ∘C of warming. Climate sensitivity is 3.5 ∘C for the pre-industrial and 2.9 ∘C for the Pliocene. Precipitation change between the pre-industrial and Pliocene is complex, with geographic and land surface changes primarily modifying the geographical extent of mean annual precipitation. Sea ice fraction and areal extent are reduced during the Pliocene, particularly in the Southern Hemisphere, although they persist through summer in both hemispheres. The Pliocene palaeogeography drives a more intense Pacific and Atlantic meridional overturning circulation (AMOC). This intensification of AMOC is coincident with more widespread deep convection in the North Atlantic. We conclude by examining additional sensitivity experiments and confirm that the choice of total solar insolation (1361 vs. 1365 Wm−2) and orbital configuration (modern vs. 3.205 Ma) does not significantly influence the anomaly-type analysis in use by the Pliocene community.


2012 ◽  
Vol 16 (2) ◽  
pp. 305-318 ◽  
Author(s):  
I. Haddeland ◽  
J. Heinke ◽  
F. Voß ◽  
S. Eisner ◽  
C. Chen ◽  
...  

Abstract. Due to biases in the output of climate models, a bias correction is often needed to make the output suitable for use in hydrological simulations. In most cases only the temperature and precipitation values are bias corrected. However, often there are also biases in other variables such as radiation, humidity and wind speed. In this study we tested to what extent it is also needed to bias correct these variables. Responses to radiation, humidity and wind estimates from two climate models for four large-scale hydrological models are analysed. For the period 1971–2000 these hydrological simulations are compared to simulations using meteorological data based on observations and reanalysis; i.e. the baseline simulation. In both forcing datasets originating from climate models precipitation and temperature are bias corrected to the baseline forcing dataset. Hence, it is only effects of radiation, humidity and wind estimates that are tested here. The direct use of climate model outputs result in substantial different evapotranspiration and runoff estimates, when compared to the baseline simulations. A simple bias correction method is implemented and tested by rerunning the hydrological models using bias corrected radiation, humidity and wind values. The results indicate that bias correction can successfully be used to match the baseline simulations. Finally, historical (1971–2000) and future (2071–2100) model simulations resulting from using bias corrected forcings are compared to the results using non-bias corrected forcings. The relative changes in simulated evapotranspiration and runoff are relatively similar for the bias corrected and non bias corrected hydrological projections, although the absolute evapotranspiration and runoff numbers are often very different. The simulated relative and absolute differences when using bias corrected and non bias corrected climate model radiation, humidity and wind values are, however, smaller than literature reported differences resulting from using bias corrected and non bias corrected climate model precipitation and temperature values.


2013 ◽  
Vol 10 (6) ◽  
pp. 4189-4210 ◽  
Author(s):  
D. Dalmonech ◽  
S. Zaehle

Abstract. Terrestrial ecosystem models used for Earth system modelling show a significant divergence in future patterns of ecosystem processes, in particular the net land–atmosphere carbon exchanges, despite a seemingly common behaviour for the contemporary period. An in-depth evaluation of these models is hence of high importance to better understand the reasons for this disagreement. Here, we develop an extension for existing benchmarking systems by making use of the complementary information contained in the observational records of atmospheric CO2 and remotely sensed vegetation activity to provide a novel set of diagnostics of ecosystem responses to climate variability in the last 30 yr at different temporal and spatial scales. The selection of observational characteristics (traits) specifically considers the robustness of information given that the uncertainty of both data and evaluation methodology is largely unknown or difficult to quantify. Based on these considerations, we introduce a baseline benchmark – a minimum test that any model has to pass – to provide a more objective, quantitative evaluation framework. The benchmarking strategy can be used for any land surface model, either driven by observed meteorology or coupled to a climate model. We apply this framework to evaluate the offline version of the MPI Earth System Model's land surface scheme JSBACH. We demonstrate that the complementary use of atmospheric CO2 and satellite-based vegetation activity data allows pinpointing of specific model deficiencies that would not be possible by the sole use of atmospheric CO2 observations.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 675 ◽  
Author(s):  
Almazroui

This paper investigates the temperature and precipitation extremes over the Arabian Peninsula using data from the regional climate model RegCM4 forced by three Coupled Model Intercomparison Project Phase 5 (CMIP5) models and ERA–Interim reanalysis data. Indices of extremes are calculated using daily temperature and precipitation data at 27 meteorological stations located across Saudi Arabia in line with the suggested procedure from the Expert Team on Climate Change Detection and Indices (ETCCDI) for the present climate (1986–2005) using 1981–2000 as the reference period. The results show that RegCM4 accurately captures the main features of temperature extremes found in surface observations. The results also show that RegCM4 with the CLM land–surface scheme performs better in the simulation of precipitation and minimum temperature, while the BATS scheme is better than CLM in simulating maximum temperature. Among the three CMIP5 models, the two best performing models are found to accurately reproduce the observations in calculating the extreme indices, while the other is not so successful. The reason for the good performance by these two models is that they successfully capture the circulation patterns and the humidity fields, which in turn influence the temperature and precipitation patterns that determine the extremes over the study region.


Sign in / Sign up

Export Citation Format

Share Document