scholarly journals Simulations of direct and reflected wave trajectories for ground-based GNSS-R experiments

2014 ◽  
Vol 7 (5) ◽  
pp. 2261-2279 ◽  
Author(s):  
N. Roussel ◽  
F. Frappart ◽  
G. Ramillien ◽  
J. Darrozes ◽  
C. Desjardins ◽  
...  

Abstract. The detection of Global Navigation Satellite System (GNSS) signals that are reflected off the surface, along with the reception of direct GNSS signals, offers a unique opportunity to monitor water level variations over land and ocean. The time delay between the reception of the direct and reflected signals gives access to the altitude of the receiver over the reflecting surface. The field of view of the receiver is highly dependent on both the orbits of the GNSS satellites and the configuration of the study site geometries. A simulator has been developed to determine the location of the reflection points on the surface accurately by modeling the trajectories of GNSS electromagnetic waves that are reflected by the surface of the Earth. Only the geometric problem was considered using a specular reflection assumption. The orbit of the GNSS constellation satellites (mainly GPS, GLONASS and Galileo), and the position of a fixed receiver, are used as inputs. Four different simulation modes are proposed, depending on the choice of the Earth surface model (local plane, osculating sphere or ellipsoid) and the consideration of topography likely to cause masking effects. Angular refraction effects derived from adaptive mapping functions are also taken into account. This simulator was developed to determine where the GNSS-R receivers should be located to monitor a given study area efficiently. In this study, two test sites were considered: the first one at the top of the 65 m Cordouan lighthouse in the Gironde estuary, France, and the second one on the shore of Lake Geneva (50 m above the reflecting surface), at the border between France and Switzerland. This site is hidden by mountains in the south (orthometric altitude up to 2000 m), and overlooking the lake in the north (orthometric altitude of 370 m). For this second test site configuration, reflections occur until 560 m from the receiver. The planimetric (arc length) differences (or altimetric difference as WGS84 ellipsoid height) between the positions of the specular reflection points obtained considering the Earth's surface as an osculating sphere or as an ellipsoid were found to be on average 9 cm (or less than 1 mm) for satellite elevation angles greater than 10°, and 13.9 cm (or less than 1 mm) for satellite elevation angles between 5 and 10°. The altimetric and planimetric differences between the plane and sphere approximations are on average below 1.4 cm (or less than 1 mm) for satellite elevation angles greater than 10° and below 6.2 cm (or 2.4 mm) for satellite elevation angles between 5 and 10°. These results are the means of the differences obtained during a 24 h simulation with a complete GPS and GLONASS constellation, and thus depend on how the satellite elevation angle is sampled over the day of simulation. The simulations highlight the importance of the digital elevation model (DEM) integration: average planimetric differences (or altimetric) with and without integrating the DEM (with respect to the ellipsoid approximation) were found to be about 6.3 m (or 1.74 m), with the minimum elevation angle equal to 5°. The correction of the angular refraction due to troposphere on the signal leads to planimetric (or altimetric) differences of an approximately 18 m (or 6 cm) maximum for a 50 m receiver height above the reflecting surface, whereas the maximum is 2.9 m (or 7 mm) for a 5 m receiver height above the reflecting surface. These errors increase deeply with the receiver height above the reflecting surface. By setting it to 300 m, the planimetric errors reach 116 m, and the altimetric errors reach 32 cm for satellite elevation angles lower than 10°. The tests performed with the simulator presented in this paper highlight the importance of the choice of the Earth's representation and also the non-negligible effect of angular refraction due to the troposphere on the specular reflection point positions. Various outputs (time-varying reflection point coordinates, satellite positions and ground paths, wave trajectories, first Fresnel zones, etc.) are provided either as text or KML files for visualization with Google Earth.

2014 ◽  
Vol 7 (1) ◽  
pp. 1001-1062 ◽  
Author(s):  
N. Roussel ◽  
F. Frappart ◽  
G. Ramillien ◽  
C. Desjardins ◽  
P. Gegout ◽  
...  

Abstract. The detection of Global Navigation Satellite System (GNSS) signals that are reflected off the surface, together with the reception of direct GNSS signals offers a unique opportunity to monitor water level variations over land and ocean. The time delay between the reception of the direct and the reflected signal gives access to the altitude of the receiver over the reflecting surface. The field of view of the receiver is highly dependent on both the orbits of the GNSS satellites and the configuration of the study site geometries. A simulator has been developed to determine the accurate location of the reflection points on the surface by modelling the trajectories of GNSS electromagnetic waves that are reflected on the surface of the Earth. Only the geometric problem have been considered using a specular reflection assumption. The orbit of the GNSS constellations satellite (mainly GPS, GLONASS and Galileo), and the position of a fixed receiver are used as input. Three different simulation modes are proposed depending on the choice of the Earth surface (local sphere or ellipsoid) and the consideration of topography likely to cause masking effects. Atmospheric delay effects derived from adaptive mapping functions are also taken into account. This simulator was developed to determine where the GNSS-R receivers should be located to monitor efficiently a given study area. In this study, two test sites were considered. The first one at the top of the Cordouan lighthouse (45°35'11'' N; 1°10'24'' W; 65 m) and the second one in the shore of the Geneva lake (46°24'30'' N; 6°43'6'' E, with a 50 m receiver height). This site is hidden by mountains in the South (altitude up to 2000 m), and overlooking the lake in the North (altitude of 370 m). For this second test site configuration, reflections occur until 560 m from the receiver. The geometric differences between the positions of the specular reflection points obtained considering the Earth as a sphere or as an ellipsoid were found to be on average 44 cm for satellites elevation angle greater than 10° and 1 m for satellite elevation angle between 5° and 10°. The simulations highlight the importance of the DEM integration: differences with and without integrating the DEM were found to be about 3.80 m with the minimum elevation angle equal to 5° and 1.4 m with the minimum elevation angle set to 10°. The correction of the tropospheric effects on the signal leads to geometric differences about 24 m maximum for a 50 m receiver height whereas the maximum is 43 cm for a 5 m receiver height. These errors deeply increase with the receiver height. By setting it to 300 m, the geometric errors reach 103 m for satellite elevation angle lower than 10°. The tests performed with the simulator presented in this paper highlight the importance of the choice of the Earth representation and also the non-negligible effect of the troposphere on the specular reflection points positions. Various outputs (time-varying reflection point coordinates, satellites positions and ground paths, wave trajectories, Fresnel first surfaces, etc.) are provided either as text or KML files for a convenient use.


2021 ◽  
Author(s):  
Vitor Hugo Almeida Junior ◽  
Marcelo Tomio Matsuoka ◽  
Felipe Geremia-Nievinski

<p>Global mean sea level is rising at an increasing rate. It is expected to cause more frequent extreme events on coastal sites. The main sea level monitoring systems are conventional tide gauges and satellite altimeters. However, tide gauges are few and satellite altimeters do not work well near the coasts. Ground-based GNSS Reflectometry (GNSS-R) is a promising alternative for coastal sea level measurements. GNSS-R works as a bistatic radar, based on the use of radio waves continuously emitted by GNSS satellites, such as GPS and Galileo, that are reflected on the Earth’s surface. The delay between reflected and direct signals, known as interferometric delay, can be used to retrieve geophysical parameters, such as sea level. One advantage of ground-based GNSS-R is the slant sensing direction, which implies the reflection points can occur at long distances from the receiving antenna. The higher is the receiving antenna and the lower is the satellite elevation angle, the longer will be the distance to the reflection point. The geometrical modeling of interferometric delay, in general, adopts a planar and horizontal model to represent the reflector surface. This assumption may be not valid for far away reflection points due to Earth’s curvature. It must be emphasized that ground-based GNSS-R sensors can be located at high altitudes, such in lighthouses and cliffs, and GNSS satellites are often tracked near grazing incidence and even at negative elevation angles. Eventually, Earth’s curvature would have a significant impact on altimetry retrievals. The osculating spherical model is more adequate to represent the Earth’s surface since its mathematical complexity is in between a plane and an ellipsoid. The present work aims to quantify the effect of Earth’s curvature on ground-based GNSS-R altimetry. Firstly, we modeled the interferometric delay for each plane and sphere and we calculated the differences across the two surface models, for varying satellite elevation and antenna altitude. Then, we developed an altimetry correction in terms of half of the rate of change of the delay correction with respect to the sine of elevation. We simulated observation scenarios with satellite elevation angles from zenith down to the minimum observable elevation on the spherical horizon (negative) and antenna altitudes from 10 m to 500 m. We noted that due to Earth’s curvature, the reflection point is displaced, brought closer in the x-axis and bent downward in the y-axis. The displacement of the reflection point increases the interferometric delay. Near the planar horizon, at zero elevation, the difference increases quickly and so does the altimetry correction. Finally, considering a 1-cm altimetry precision threshold to sea-level measurements, we observed that the altimetry correction for Earth’s curvature is needed at 10°, 20°, and 30° satellite elevation, for an antenna altitude of 60 m, 120 m, and 160 m, respectively.</p>


1997 ◽  
Vol 161 ◽  
pp. 761-776 ◽  
Author(s):  
Claudio Maccone

AbstractSETI from space is currently envisaged in three ways: i) by large space antennas orbiting the Earth that could be used for both VLBI and SETI (VSOP and RadioAstron missions), ii) by a radiotelescope inside the Saha far side Moon crater and an Earth-link antenna on the Mare Smythii near side plain. Such SETIMOON mission would require no astronaut work since a Tether, deployed in Moon orbit until the two antennas landed softly, would also be the cable connecting them. Alternatively, a data relay satellite orbiting the Earth-Moon Lagrangian pointL2would avoid the Earthlink antenna, iii) by a large space antenna put at the foci of the Sun gravitational lens: 1) for electromagnetic waves, the minimal focal distance is 550 Astronomical Units (AU) or 14 times beyond Pluto. One could use the huge radio magnifications of sources aligned to the Sun and spacecraft; 2) for gravitational waves and neutrinos, the focus lies between 22.45 and 29.59 AU (Uranus and Neptune orbits), with a flight time of less than 30 years. Two new space missions, of SETI interest if ET’s use neutrinos for communications, are proposed.


2019 ◽  
Vol 2 (S1) ◽  
Author(s):  
Jelenko Karpić ◽  
Ekanki Sharma ◽  
Tamer Khatib ◽  
Wilfried Elmenreich

Abstract The rising demand for sustainable energy requires to identify the sites for photovoltaic systems with the best performance. This paper tackles the question of feasibility of photovoltaic power plants at high altitude. A direct comparison between an alpine and an urban area site is conducted in the south of Austria. Two low-cost automatic photovoltaic power measurement devices with dual-axis sun tracking and maximum power point tracking are deployed at two test sites. The system periodically performs a scan over the southern semihemisphere and executes maximum power point adjustment in order to assess the performance for a given direction. The gathered data shows a higher photovoltaic power yield in the higher altitude test site. Furthermore, the high altitude photovoltaic power as a function of azimuth and elevation angle appears to be not only higher but also more flat than in lower altitudes. This indicates a lower power loss in case of deviation from the optimal solar angles. The results show that even on low-cost hardware a difference in photovoltaic power can be observed, even though in this experiment it amounts to less than 5% increase of peak power in higher altitudes. However, the measured peak powers on the mountain are more stable and therefore closer to a constant level than the heavily fluctuating peak power values at the low altitude site. Additionally, a slight shift in optimal elevation angles between altitudes can be observed, as the optimum angle turns out to be lower on the high altitude site. This angle shift could be caused by snow reflections on the mountainous test site.


Polar Record ◽  
2007 ◽  
Vol 43 (4) ◽  
pp. 305-310 ◽  
Author(s):  
Lisa M. Ballagh ◽  
Mark A. Parsons ◽  
Ross Swick

ABSTRACTThe United States National Snow and Ice Data Center (NSIDC) initiated an outreach project to enhance the visibility of and interest in cryospheric images. Methods were utilised to convert cryospheric data into a projection and image format compatible with Google Earth™. The word ‘image’ should be emphasised since raster data in a native polar projection and format cannot be overlaid on the Earth without prior data conversions. The project focused on reaching out to a diverse audience by integrating images from key components of the cryosphere into a single compressed Keyhole Markup Language (KMZ) file. As a result, users can visualise glacier photographs, permafrost type and extent, sea ice concentration and extent, and snow extent superimposed on the Earth. Those interested in browsing the NSIDC collection of over 3,000 glacier photographs have the option of zooming into Alaska for a majority of the images and accessing both the photograph and the associated metadata. For a current perspective of global snow and ice coverage, one could look at satellite imagery derived from passive microwave Special Sensor Microwave/Imager (SSM/I) data. Another option is to select the permafrost layer and observe the various types and extent of permafrost. This paper explores the project by describing the data, methodologies and results and concludes with future implications on how to improve the processing and functionality of polar data in Google Earth.


2021 ◽  
Vol 25 (9) ◽  
pp. 30-37
Author(s):  
N.N. Sliusar ◽  
A.P. Belousova ◽  
G.M. Batrakova ◽  
R.D. Garifzyanov ◽  
M. Huber-Humer ◽  
...  

The possibilities of using remote sensing of the Earth data to assess the formation of phytocenoses at reclaimed dumps and landfills are presented. The objects of study are landfills and dumps in the Perm Territory, which differed from each other in the types and timing of reclamation work. The state of the vegetation cover on the reclaimed and self-overgrowing objects was compared with the reference plots with naturally formed herbage of zonal meadow vegetation. The process of reclamation of the territory of closed landfills was assessed by the presence and homogeneity of the vegetation layer and by the values of the vegetation index NDVI. To identify the dynamics of changes in the vegetation cover, we used multi-temporal satellite images from the open resources of Google Earth and images in the visible and infrared ranges of the Landsat-5/TM and Landsat-8/OLI satellites. It is shown that the data of remote sensing of the Earth, in particular the analysis of vegetation indices, can be used to assess the dynamics of overgrowing of territories of reclaimed waste disposal facilities, as well as an additional and cost-effective method for monitoring the restoration of previously disturbed territories.


2021 ◽  
Author(s):  
Thalia Nikolaidou ◽  
Marcelo Santos ◽  
Simon D. P. Williams ◽  
Felipe Geremia-Nievinski

<p>GNSS reflectometry (GNSS-R) ability to remote sense the Earth’s surface is affected by an atmospheric bias, as pointed out by several recent studies. In particular, sea level altimetry retrievals are biased in proportion to the reflector height, while by-products, such as tidal amplitudes, are underestimated. Previously, we developed an atmospheric ray-tracing procedure to solve rigorously the three-point boundary value problem of ground-based GNSS-R observations. We defined the reflection-minus-direct or interferometric delay in terms of vacuum distance and radio length. We clarified the roles of linear and angular refraction in splitting the total delay in two components, along-path and geometric. We introduced for the first time two subcomponents of the atmospheric geometric delay, the geometry shift and geometric excess. Finally, we defined atmospheric altimetry corrections necessary for unbiased altimetry retrievals based on half of the rate of change of the atmospheric delays with respect to sine of elevation angle. Later, for users without access to ray-tracing software, we developed closed-form expressions for the atmospheric delay and altimetry correction. The first expression accounts for the angular component of refraction (bending), leading to a displaced specular reflection point. The second one accounts for the linear component (speed retardation) in a homogeneous atmosphere. The expressions are parametrized in terms of refractivity and elevation bending, which can be obtained from empirical models, such as the GPT2 or Bennet’s, or fine-tuned based on in situ pressure and temperature. We also provide a correction for the satellite elevation angle such that the refraction effect is nullified. We validated these expressions against rigorous ray-tracing results and showed that the discrepancy is caused by assumptions in the derivation of the closed formulas. We found the corrections to be beneficial even for small reflector heights, as approximated half of the atmospheric effect originates above the receiving antenna at low satellite elevation angles.</p>


2019 ◽  
Vol 12 (1) ◽  
pp. 23-34 ◽  
Author(s):  
Gregor Möller ◽  
Daniel Landskron

Abstract. In Global Navigation Satellite System (GNSS) tomography, precise information about the tropospheric water vapor distribution is derived from integral measurements like ground-based GNSS slant wet delays (SWDs). Therefore, the functional relation between observations and unknowns, i.e., the signal paths through the atmosphere, have to be accurately known for each station–satellite pair involved. For GNSS signals observed above a 15∘ elevation angle, the signal path is well approximated by a straight line. However, since electromagnetic waves are prone to atmospheric bending effects, this assumption is not sufficient anymore for lower elevation angles. Thus, in the following, a mixed 2-D piecewise linear ray-tracing approach is introduced and possible error sources in the reconstruction of the bended signal paths are analyzed in more detail. Especially if low elevation observations are considered, unmodeled bending effects can introduce a systematic error of up to 10–20 ppm, on average 1–2 ppm, into the tomography solution. Thereby, not only the ray-tracing method but also the quality of the a priori field can have a significant impact on the reconstructed signal paths, if not reduced by iterative processing. In order to keep the processing time within acceptable limits, a bending model is applied for the upper part of the neutral atmosphere. It helps to reduce the number of processing steps by up to 85 % without significant degradation in accuracy. Therefore, the developed mixed ray-tracing approach allows not only for the correct treatment of low elevation observations but is also fast and applicable for near-real-time applications.


2018 ◽  
Vol 11 (1) ◽  
pp. 33 ◽  
Author(s):  
Fan Wu ◽  
Wei Zheng ◽  
Zhaowei Li ◽  
Zongqiang Liu

Global Navigation Satellite System Reflectometry (GNSS-R) is of great significance for the extraction and research of precise information of sea surface topography. Improving measurement accuracy is necessary for realizing spaceborne GNSS-R sea surface altimetry application. The main error source of GNSS-R distance measurement is the error of the specular reflection point positioning, which directly affects the sea surface altimetry accuracy on the reference datum. There is an elevation error of several tens of meters between the reflection reference surface used by the existing specular reflection point geometric positioning methods and the sea surface elevation, which is importantly influenced by the earth’s gravity field. Therefore, the gravity field reflection reference surface correction is the key to improving the specular reflection point positioning accuracy. In this study, based on the correction of the GNSS-R reflection reference surface, research on improving the positioning accuracy of the specular reflection point is carried out. Firstly, in order to reduce the positioning error caused by the elevation difference between the reflection reference surface and the sea surface, the gravity field reflection reference surface correction method (GFRRSCM) which corrects the reflection reference surface from the WGS-84 ellipsoid to geoid is proposed, and the positioning accuracy is improved by 25.15 m. Secondly, the normal projection reflection reference surface correction method (NPRRSCM) is proposed to correct the specular reflection point determined by the GFRRSCM from the reflection reference plane of the radial to that of the normal. Additionally, in the process of solving the spatial geometric relationship of the reflection path, the approximate substitution error is reduced by directly solving the normal projection on the plane, and the positioning accuracy is further improved by 13.05 m towards the normal. Thirdly, based on the gravity field normal projection reflection reference surface combination correction method (GF-NPRRSCCM), the specular reflection point positioning accuracy is synthetically improved by 28.66 m.


Sign in / Sign up

Export Citation Format

Share Document