scholarly journals Modeling short wave solar radiation using the JGrass-NewAge System

2012 ◽  
Vol 5 (4) ◽  
pp. 4355-4393 ◽  
Author(s):  
G. Formetta ◽  
R. Rigon ◽  
J. L. Chávez ◽  
O. David

Abstract. This paper presents two new modelling components based on the Object Modelling System v3 for the calculation of the shortwave incident radiation (R^sw↓) on complex topography settings, and the implementation of several ancillary tools. The first component, NewAGE-SwRB, accounts for slope, aspect, shadow and the topographical information of the sites, and use suitable parametrisation for obtaining the cloudless irradiance. A second component, NewAGE-DEC-MOD's is implemented to estimate the irradiance reduction due to the presence of clouds, according to three parameterisations. To obtain a working modelling composition, suitable to be compared with ground data at measurement stations, the two components are connected to a Kriging component, and, with the use of a further component NewAGE-V (verification package), the performance of modeled (R^sw↓) is quantitatively evaluated. The two components (and the various parametrisations they contain) are tested using the data from three basins catchments, and some simple verification test is made to assess the goodness of the methods used. The components are part of a larger system, JGrass-NewAGE, their input and outputs are given as geometrical objects immediately visualisable in a GIS (for instance the companion uDig), and can be used seamlessly with the various modelling solutions available in JGrass-NewAGE for the estimation of long wave radiation, evapotranspiration, and snow melting, as well as stand-alone components to just estimate shortwave radiation for various uses. The modularity of the approach is shown to be extensible to more accurate physical-statistical studies aimed to assess in deep the components performances and extends spatially their results, without the necessity of recoding any part of the component but just making using of connective scripts.

2013 ◽  
Vol 6 (4) ◽  
pp. 915-928 ◽  
Author(s):  
G. Formetta ◽  
R. Rigon ◽  
J. L. Chávez ◽  
O. David

Abstract. This paper presents two new modeling components based on the object modeling system v3 (OMS3) for the calculation of the shortwave incident radiation (Rsw↓) on complex topography settings, and the implementation of several ancillary tools. The first component, NewAGE-SwRB, accounts for elevation slope, aspect, shadow of the sites, and uses suitable parameterization for obtaining the cloudless irradiance. A second component, NewAGE-DEC-MOD's is implemented to estimate the irradiance reduction due to the presence of clouds according to three parameterizations. To obtain a working modeling composition that is comparable with ground data at measurement stations the two components are connected to a kriging component. With the help of an additional component, NewAGE-V (verification package), the performance of modeled (Rsw↓) is quantitatively evaluated. The two components (and the various parameterizations they contain) are tested using the data from three basins, and some simple verification tests were carried out to assess the goodness of the methods used. Moreover, a raster mode test is performed in order to show the capability of the system in providing solar radiation raster maps. The components are part of a larger system, JGrass-NewAGE, their input and outputs are geometrical objects immediately displayed in a geographical information system (GIS). They can be used seamlessly with the various modeling solutions available in JGrass-NewAGE for the estimation of long wave radiation, evapotranspiration, and snow melting, as well as standalone components to just estimate shortwave radiation for various uses. The modularity of the approach leads to more accurate physical-statistical studies aimed to assess in depth the components' performances and extends their results spatially, without the necessity of recoding any part of the component.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Britta Jänicke ◽  
Fred Meier ◽  
Marie-Therese Hoelscher ◽  
Dieter Scherer

The evaluation of the effectiveness of countermeasures for a reduction of urban heat stress, such as façade greening, is challenging due to lacking transferability of results from one location to another. Furthermore, complex variables such as the mean radiant temperature(Tmrt)are necessary to assess outdoor human bioclimate. We observedTmrtin front of a building façade in Berlin, Germany, which is half-greened while the other part is bare.Tmrtwas reduced (mean 2 K) in front of the greened compared to the bare façade. To overcome observational shortcomings, we applied the microscale models ENVI-met, RayMan, and SOLWEIG. We evaluated these models based on observations. Our results show thatTmrt(MD = −1.93 K) and downward short-wave radiation (MD = 14.39 W/m2) were sufficiently simulated in contrast to upward short-wave and long-wave radiation. Finally, we compare the simulated reduction ofTmrtwith the observed one in front of the façade greening, showing that the models were not able to simulate the effects of façade greening with the applied settings. Our results reveal that façade greening contributes only slightly to a reduction of heat stress in front of building façades.


1974 ◽  
Vol 13 (67) ◽  
pp. 73-84 ◽  
Author(s):  
W. Ambach

The short-wave and long-wave radiant fluxes measured in the accumulation area of the Greenland ice sheet during a mid-summer period are discussed with respect to their dependence on cloudiness. At a cloudiness of 10/10, a mean value of 270 J/cm2 d is obtained for the daily totals of net radiation balance, whereas a mean value of only 75 J/cm2 d is observed at 0/10. The energy excess of the net radiation balance with overcast sky is due to the significant influence of the incoming long-wave radiation and the high albedo of the surface (average of 84%). High values of net radiation balance are therefore correlated with high values of long-wave radiation balance and low values of short-wave radiation balance.


2021 ◽  
Author(s):  
Georges Djoumna ◽  
Sebastian H. Mernild ◽  
David Holland

<p>The surface radiation budget is an essential component of the total energy exchange between the atmosphere and the Earth’s surface. Measurements of radiative fluxes near/on ice surfaces are sparse in the polar regions, including on the Greenland Ice Sheet (GrIS), and the effects of cloud on radiative fluxes are still poorly studied. In this work, we assess the impacts of cloud on radiative fluxes using two metrics: the longwave-equivalent cloudiness, derived from long-wave radiation measurements, and the cloud transmittance factor, obtained from short-wave radiation. The metrics are applied to radiation data from two automatic weather stations located over the bare ground near the ice front of Helheim (HG) and Jakobshavn Isbræ (JI) on the GrIS. Comparisons of meteorological parameters, surface radiation fluxes, and cloud metrics show significant differences between the two sites. The cloud transmittance factor is higher at HG than at JI, and the incoming short-wave radiation in the summer at HG is 50.0 W m−2 larger than at JI. Cloud metrics derived at the two sites reveal   a high dependency on the wind direction. The total cloud radiative effect (CREnet) generally increases during melt season at the two stations due to long-wave CRE enhancement by cloud fraction.  CREnet decreases from May to June and increases afterward, due to the strengthened short-wave CRE. The annually averaged CREnet were 3.0 ± 7.4 W m-2 and 1.9 ± 15.1 W m−2 at JI and HG.  CREnet estimated from AWS indicates that clouds cool the JI and HG during melt season at different rates.</p>


2019 ◽  
Vol 10 (1) ◽  
pp. 283
Author(s):  
Yongzong Lu ◽  
Yongguang Hu ◽  
Pingping Li ◽  
Kyaw Tha Paw U ◽  
Richard L. Snyder

Radiation frost happens frequently in the Yangtze River Delta region, which causes high economic loss in agriculture industry. It occurs because of heat losses from the atmosphere, plant and soil in the form of radiant energy, which is strongly associated with the micrometeorological characteristics. Multidimensional and nonlinear micrometeorological data enhances the difficulty in predicting the radiation frost. Support vector machines (SVMs), a type of algorithms, can be supervised learning which widely be employed for classification or regression problems in research of precision agriculture. This paper is the first attempt of using SVMs to build prediction models for radiation frost. Thirty-two kinds of micrometeorological parameters, such as daily mean temperature at six heights (Tmean0.5, Tmean1.5, Tmean2.0, Tmean3.0, Tmean4.5 and Tmean6.0), daily maximum and minimum temperatures at six heights (Tmax0.5, Tmax1.5, Tmax2.0, Tmax3.0, Tmax4.5 and Tmax6.0, and Tmin0.5, Tmin1.5, Tmin2.0, Tmin3.0, Tmin4.5 and Tmin6.0), daily mean relative humidity at six heights (RH0.5, RH1.5, RH2.0, RH3.0, RH4.5 and RH6.0), net radiation (Rn), downward short-wave radiation (Rsd), downward long-wave radiation (Rld), upward long-wave radiation (Rlu), upward short-wave radiation (Rsu), soil temperature (Tsoil) and soil heat flux (G) and daily average wind speed (u) were collected from November 2016 to July 2018. Six combinations inputs were used as the basis dataset for testing and training. Three types of kernel functions, such as linear kernel, radial basis function kernel and polynomial kernel function were used to develop the SVMs models. Five-fold cross validation was conducted for model fitting on training dataset to alleviate over-fitting and make prediction results more reliable. The results showed that an SVM with the radial basis function kernel (SVM-BRF) model with all the 32 micrometeorological data obtained high prediction accuracy in training and testing sets. When the single type of data (temperature, humidity and radiation data) was used for the SVM without any functions, prediction accuracy was better than that with functions. The SVM-BRF model had the best prediction accuracy when using the multidimensional and nonlinear micrometeorological data. Considering the complexity level of the model and the accuracy of prediction, micrometeorological data at the canopy height with the SVM-BRF model has been recommended for radiation frost prediction in Yangtze River Delta and probably could be applied in elsewhere with the similar terrains and micro-climates.


1966 ◽  
Vol 6 (44) ◽  
pp. 267-287 ◽  
Author(s):  
C. M. Platt

AbstractMeteorological observations were made on Lewis Glacier, Mount Kenya, during the “long rains” in April 1960. General meteorological observations indicated rather similar conditions to those found in other months. Ablation occurred on each day but amounts were generally small. Rather more accumulation occurred than is expected during the dry season, but again amounts were small. The net accumulation over a to day period was only 0.38 cm. water-equivalent, although about 30 cm. new snow (about 10 cm. water-equivalent) was lying when the expedition arrived. Detailed observations of short-wave radiation, temperature, wind and humidity with estimates of long-wave radiation were used to calculate the heat balance at the surface of the upper ablation region. Agreement between calculated and measured ablation was reasonably good. Over the periods considered, radiation accounted for 89.5 per cent of ablation, turbulent exchange from the air for 8.0 per cent and evaporation for 2.5 per cent. Subsurface melting was taken into account and the formation of ice bands in terms of such melting is discussed.


1980 ◽  
Vol 25 (93) ◽  
pp. 439-444 ◽  
Author(s):  
Stefan Hastenrath ◽  
J. K. Patnaik

AbstractShort- and long-wave radiation on variously oriented vertical surfaces, direct solar radiation, global radiation, and long–wave radiation on a horizontal surface were measured on Lewis Glacier, Mount Kenya, at 4800 m. For the orientation of vertical surfaces, the following azimuths were selected: 45°, facing the steep slope of the upper glacier; 135°, facing a rock ridge and some glacier surface in the foreground; 225°, facing down–glacier towards the Teleki valley with open sky occupying much of the view; and 315°, directed towards the steep south-east face of the Nelion peak.The horizontal components of diffuse short-wave radiation reach a magnitude comparable to those of direct radiation. As a result of contrastingly different albedos of natural surfaces, the horizontal component of diffuse short–wave radiation is particularly large from the direction of the upper glacier, with values around 330–500 W m−2, and smallest from the direction of the rock face of Nelion peak, where values are around 150–330 W m−2. Long–wave radiation seems enhanced from the direction of the Nelion face, and reduced from the azimuth of the upper glacier, thus apparently reflecting differences in emissivity and temperature.


1982 ◽  
Vol 3 ◽  
pp. 327-332
Author(s):  
Takashi Yamanouchi ◽  
Makoto Wada ◽  
Shinji Mae ◽  
Sadao Kawaguchi ◽  
Kou Kusunoki

Radiation budget measurements were made at Mizuho station (70°42'S, 44"20'E, 2 230 m a. s.1.), East Antarctica, in 1979, within the framework of the Japanese POLEX-South programme. Global, and reflected short-wave and downward and upward long-wave radiat i on fluxes were measured at the snow surface and at the top of a 30 m tower. Direct solar radiation was also measured at the snow surface.Seasonal variations of net radiation and net short-wave and net long-wave radiation are presented. Daily variation of net radiation is also presented with the daily value of meteorological elements. The monthly amounts of net radiation in winter months had very large negative values of about -80 MJ m−2 month−1. (-2 kly month−1). Daily totals of net radiation for clear skies were negative even i n summer, and were always smaller than those for cloudy skies. Monthly amounts of net radiation in summer months (about -1 MJ m−2 month−1 in December) were the smallest among the several Antarctic stations compared, and whether the balance was negative or positive depended on the ratio of clear and cloudy days. Comparison of seasonal variations of radiation components was made and the dominant cause of the radiation balance was discussed.


2021 ◽  
Vol 8 ◽  
Author(s):  
G. Djoumna ◽  
S. H. Mernild ◽  
D. M. Holland

The surface radiation budget is an essential component of the total energy exchange between the atmosphere and the Earth’s surface. Measurements of radiative fluxes near/on ice surfaces are sparse in the polar regions, including on the Greenland Ice Sheet (GrIS), and the effects of cloud on radiative fluxes are still poorly studied. In this work, we assess the impacts of cloud on radiative fluxes using two metrics: the longwave-equivalent cloudiness, derived from long-wave radiation measurements, and the cloud transmittance factor, obtained from short-wave radiation data. The metrics are applied to radiation data from two automatic weather stations located over the bare ground near the ice front of Helheim (HG, 66.3290°N, 38.1460°W) and Jakobshavn Isbræ(JI, 69.2220°N, 49.8150°W) on the GrIS. Comparisons of meteorological parameters, surface radiation fluxes, and cloud metrics show significant differences between the two sites. The cloud transmittance factor is higher at HG than at JI, and the incoming short-wave radiation in the summer at HG is about 50.0 W m−2 larger than at JI. Cloud metrics derived at the two sites reveal partly cloudy conditions were frequent (42 and 65% of the period at HG and JI) with a high dependency on the wind direction. The total cloud radiative effect (CREnet) generally increases during melt season at the two stations due to long-wave CRE enhancement by cloud fraction. CREnet decreases from May to June and increases afterward, due to the strengthened short-wave CRE. The annually averaged CREnet were 3.0 ± 7.4 W m−2 and 1.9±15.1 W m−2 at JI and HG. CREnet estimated from AWS indicates that clouds cool the JI and HG during melt season at different rates.


1987 ◽  
Vol 33 (113) ◽  
pp. 24-26 ◽  
Author(s):  
M. Kuhn

AbstractThe energy budget of a snow or ice surface is determined by atmospheric variables like solar and atmospheric long-wave radiation, air temperature, and humidity; the transfer of energy from the free atmosphere to the surface depends on the stability of the atmospheric boundary layer, where vertical profiles of wind speed and temperature determine stability, and on surface conditions like surface temperature (and thus surface humidity), roughness, and albedo.This paper investigates the conditions exactly at the onset or the end of melting using air temperature, humidity, and as the radiation term the sum of global and reflected short-wave plus downward long-wave radiation. For the turbulent exchange in the boundary layer, examples are computed with a transfer coefficient of 18.5 W m−2K−1which corresponds to the average over the ablation period on an Alpine glacier. Ways to estimate the transfer coefficient for various degrees of stability are indicated in the Appendix.It appears from such calculations that snow may melt at air temperatures as low as –10°C and may stay frozen at +10°C.


Sign in / Sign up

Export Citation Format

Share Document