scholarly journals An Assessment of the Capabilities of the ERS Satellites' Active Microwave Instruments for Monitoring Soil Moisture Change

1997 ◽  
Vol 1 (1) ◽  
pp. 159-174 ◽  
Author(s):  
K. Blyth

Abstract. The launch of the European Remote sensing Satellite (ERS-1) in July 1991 represented an important turning point in the development of Earth observation as it was the first of a series of satellites which would carry high resolution active microwave (radar) sensors which could operate through the thickest cloudeover and provide continuity of data for at least a decade. This was of particular relevance to hydrological applications, such as soil moisture monitoring, which generally require frequent satellite observations to monitor changes in state. ERS-1 and its successor ERS-2 carry the active microwave instrument (AMI) which operates in 3 modes (synthetic aperture radar, wind scatterometer and wave seatterometer) together with the radar altimeter which may all be useful for the observation of soil moisture. This paper assesses the utility of these sensors through a comprehensive review of work in this field. Two approaches to soil moisture retrieval are identified: 1) inversion modelling, where the physical effects of vegetation and soil roughness on radar backscatter are quantified through the use of multi-frequency and/or multi-polarization sensors and 2) change detection where these effects are normalized through frequent satellite observation, the residual effects being attributed to short-term changes in soil moisture. Both approaches will be better supported by the future European Envisat-l satellite which will provide both multi-polarization SAR and low resolution products which should facilitate more frequent temporal observation.

1996 ◽  
Vol 26 (4) ◽  
pp. 670-681 ◽  
Author(s):  
S.B. McLaughlin ◽  
D.J. Downing

Seasonal growth patterns of mature loblolly pine (Pinustaeda L.) trees over the interval 1988–1993 have been analyzed to evaluate the effects of ambient ozone on growth of large forest trees. Patterns of stem expansion and contraction of 34 trees were examined using serial measurements with sensitive dendrometer band systems. Study sites, located in eastern Tennessee, varied significantly in soil moisture, soil fertility, and stand density. Levels of ozone, rainfall, and temperature varied widely over the 6-year study interval. Regression analysis identified statistically significant influences of ozone on stem growth patterns, with responses differing widely among trees and across years. Ozone interacted with both soil moisture stress and high temperatures, explaining 63% of the high frequency, climatic variance in stem expansion identified by stepwise regression of the 5-year data set. Observed responses to ozone were rapid, typically occurring within 1–3 days of exposure to ozone at ≥40 ppb and were significantly amplified by low soil moisture and high air temperatures. Both short-term responses, apparently tied to ozone-induced increases in whole-tree water stress, and longer term cumulative responses were identified. These data indicate that relatively low levels of ambient ozone can significantly reduce growth of mature forest trees and that interactions between ambient ozone and climate are likely to be important modifiers of future forest growth and function. Additional studies of mechanisms of short-term response and interspecies comparisons are clearly needed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthias Stocker ◽  
Florian Ladstädter ◽  
Andrea K. Steiner

AbstractWildfires are expected to become more frequent and intense in the future. They not only pose a serious threat to humans and ecosystems, but also affect Earth’s atmosphere. Wildfire plumes can reach into the stratosphere, but little is known about their climate impact. Here, we reveal observational evidence that major wildfires can have a severe impact on the atmospheric temperature structure and short-term climate in the stratosphere. Using advanced satellite observation, we find substantial warming of up to 10 K of the lower stratosphere within the wildfire plumes during their early development. The short-term climate signal in the lower stratosphere lasts several months and amounts to 1 K for the Northern American wildfires in 2017, and up to striking 3.5 K for the Australian wildfires in 2020. This is stronger than any signal from recent volcanic eruptions. Such extreme events affect atmospheric composition and climate trends, underpinning their importance for future climate.


2021 ◽  
Vol 3 ◽  
Author(s):  
Yueling Ma ◽  
Carsten Montzka ◽  
Bagher Bayat ◽  
Stefan Kollet

The lack of high-quality continental-scale groundwater table depth observations necessitates developing an indirect method to produce reliable estimation for water table depth anomalies (wtda) over Europe to facilitate European groundwater management under drought conditions. Long Short-Term Memory (LSTM) networks are a deep learning technology to exploit long-short-term dependencies in the input-output relationship, which have been observed in the response of groundwater dynamics to atmospheric and land surface processes. Here, we introduced different input variables including precipitation anomalies (pra), which is the most common proxy of wtda, for the networks to arrive at improved wtda estimates at individual pixels over Europe in various experiments. All input and target data involved in this study were obtained from the simulated TSMP-G2A data set. We performed wavelet coherence analysis to gain a comprehensive understanding of the contributions of different input variable combinations to wtda estimates. Based on the different experiments, we derived an indirect method utilizing LSTM networks with pra and soil moisture anomaly (θa) as input, which achieved the optimal network performance. The regional medians of test R2 scores and RMSEs obtained by the method in the areas with wtd ≤ 3.0 m were 76–95% and 0.17–0.30, respectively, constituting a 20–66% increase in median R2 and a 0.19–0.30 decrease in median RMSEs compared to the LSTM networks only with pra as input. Our results show that introducing θa significantly improved the performance of the trained networks to predict wtda, indicating the substantial contribution of θa to explain groundwater anomalies. Also, the European wtda map reproduced by the method had good agreement with that derived from the TSMP-G2A data set with respect to drought severity, successfully detecting ~41% of strong drought events (wtda ≥ 1.5) and ~29% of extreme drought events (wtda ≥ 2) in August 2015. The study emphasizes the importance to combine soil moisture information with precipitation information in quantifying or predicting groundwater anomalies. In the future, the indirect method derived in this study can be transferred to real-time monitoring of groundwater drought at the continental scale using remotely sensed soil moisture and precipitation observations or respective information from weather prediction models.


2014 ◽  
Vol 5 (1) ◽  
pp. 174-182 ◽  
Author(s):  
Donald J. Brown ◽  
Ivana Mali ◽  
Michael R.J. Forstner

Abstract Through modification of structural characteristics, ecological processes such as fire can affect microhabitat parameters, which in turn can influence community composition dynamics. The prevalence of high-severity forest fires is increasing in the southern and western United States, creating the necessity to better understand effects of high-severity fire, and subsequent postfire management actions, on forest ecosystems. In this study we used a recent high-severity wildfire in the Lost Pines ecoregion of Texas to assess effects of the wildfire and postfire clearcutting on six microclimate parameters: air temperature, absolute humidity, mean wind speed, maximum wind speed, soil temperature, and soil moisture. We also assessed differences between burned areas and burned and subsequently clearcut areas for short-term survivorship of loblolly pine Pinus taeda seedling trees. We found that during the summer months approximately 2 y after the wildfire, mean and maximum wind speed differed between unburned and burned areas, as well as burned and burned and subsequently clearcut areas. Our results indicated air temperature, absolute humidity, soil temperature, and soil moisture did not differ between unburned and burned areas, or burned and burned and subsequently clearcut areas, during the study period. We found that short-term survivorship of loblolly pine seedling trees was influenced primarily by soil type, but was also lower in clearcut habitat compared with habitat containing dead standing trees. Ultimately, however, the outcome of the reforestation initiative will likely depend primarily on whether or not the trees can survive drought conditions in the future, and this study indicates there is flexibility in postfire management options prior to reseeding. Further, concerns about negative wildfire effects on microclimate parameters important to the endangered Houston toad Bufo (Anaxyrus) houstonensis were not supported in this study.


2019 ◽  
Vol 20 (4) ◽  
pp. 751-771 ◽  
Author(s):  
Richard Seager ◽  
Jennifer Nakamura ◽  
Mingfang Ting

AbstractMechanisms of drought onset and termination are examined across North America with a focus on the southern Plains using data from land surface models and regional and global reanalyses for 1979–2017. Continental-scale analysis of covarying patterns reveals a tight coupling between soil moisture change over time and intervening precipitation anomalies. The southern Great Plains are a geographic center of patterns of hydrologic change. Drying is induced by atmospheric wave trains that span the Pacific and North America and place northerly flow anomalies above the southern Plains. In the southern Plains winter is least likely, and fall most likely, for drought onset and spring is least likely, and fall or summer most likely, for drought termination. Southern Plains soil moisture itself, which integrates precipitation over time, has a clear relationship to tropical Pacific sea surface temperature (SST) anomalies with cold conditions favoring dry soils. Soil moisture change, however, though clearly driven by precipitation, has a weaker relation to SSTs and a strong relation to internal atmospheric variability. Little evidence is found of connection of drought onset and termination to driving by temperature anomalies. An analysis of particular drought onsets and terminations on the seasonal time scale reveals commonalities in terms of circulation and moisture transport anomalies over the southern Plains but a variety of ways in which these are connected into the large-scale atmosphere and ocean state. Some onsets are likely to be quite predictable due to forcing by cold tropical Pacific SSTs (e.g., fall 2010). Other onsets and all terminations are likely not predictable in terms of ocean conditions.


Sign in / Sign up

Export Citation Format

Share Document