scholarly journals Technical Note: Comparing and ranking soil drought indices performance over Europe, through remote-sensing of vegetation

2010 ◽  
Vol 14 (2) ◽  
pp. 271-277 ◽  
Author(s):  
E. Peled ◽  
E. Dutra ◽  
P. Viterbo ◽  
A. Angert

Abstract. In the past years there have been many attempts to produce and improve global soil-moisture datasets and drought indices. However, comparing and validating these various datasets is not straightforward. Here, interannual variations in drought indices are compared to interannual changes in vegetation, as captured by NDVI. By comparing the correlations of the different indices with NDVI we evaluated which drought index describes most realistically the actual changes in vegetation. Strong correlation between NDVI and the drought indices were found in areas that are classified as warm temperate climate with hot or warm dry summers. In these areas we ranked the PDSI, PSDI-SC, SPI3, and NSM indices, based on the interannual correlation with NDVI, and found that NSM outperformed the rest. Using this best performing index, and the ICA (Independent Component Analysis) technique, we analyzed the response of vegetation to temperature and soil-moisture stresses over Europe.

2009 ◽  
Vol 6 (5) ◽  
pp. 6247-6264 ◽  
Author(s):  
E. Peled ◽  
E. Dutra ◽  
P. Viterbo ◽  
A. Angert

Abstract. Climate change induces long-term changes in soil-moisture. These changes can have important effects on the terrestrial biosphere, which can feedback into the climate system. In the past years there have been many attempts to produce and improve global soil-moisture datasets, however, comparing and validating these various datasets is not an easy task. Here, interannual variations in indices of soil moisture are compared to interannual changes in vegetation, as captured by NDVI. By comparing the correlations of the different indices with NDVI we evaluated which soil moisture index provides the most reliable soil moisture representation. We showed that NDVI can be used as an external validation dataset to soil moisture indices, in areas that are classified as warm temperate climate with hot or warm dry summers. Using the best performing index, NSM (Normalizes Soil Moisture), and the ICA (Independent Component Analysis) technique, we analyzed the response of vegetation to temperature and soil-moisture stresses over Europe.


2020 ◽  
Vol 11 (S1) ◽  
pp. 1-17 ◽  
Author(s):  
Muhammad Imran Khan ◽  
Xingye Zhu ◽  
Muhammad Arshad ◽  
Muhammad Zaman ◽  
Yasir Niaz ◽  
...  

Abstract Drought indices that compute drought events by their statistical properties are essential stratagems for the estimation of the impact of drought events on a region. This research presents a quantitative investigation of drought events by analyzing drought characteristics, considering agro-meteorological aspects in the Heilongjiang Province of China during 1980 to 2015. To examine these aspects, the Standardized Soil Moisture Index (SSI), Standardized Precipitation Index (SPI), and Multivariate Standardized Drought Index (MSDI) were used to evaluate the drought characteristics. The results showed that almost half of the extreme and exceptional drought events occurred during 1990–92 and 2004–05. The spatiotemporal analysis of drought characteristics assisted in the estimation of the annual drought frequency (ADF, 1.20–2.70), long-term mean drought duration (MDD, 5–11 months), mean drought severity (MDS, −0.9 to −2.9), and mild conditions of mean drought intensity (MDI, −0.2 to −0.80) over the study area. The results obtained by MSDI reveal the drought onset and termination based on the combination of SPI and SSI, with onset being dominated by SPI and drought persistence being more similar to SSI behavior. The results of this study provide valuable information and can prove to be a reference framework to guide agricultural production in the region.


2020 ◽  
Author(s):  
Song Youngseok ◽  
Kim Jinbok ◽  
Park Jongun ◽  
Park Moojong

<p>Unlike natural disasters such as typhoons, torrential rains and floods, drought is a disaster caused by long-term effects as well as short-term effects. The effect of drought is caused by damage from a short period of weeks to a long period of years, which causes extensive and enormous damage to agriculture, life, society and economy. In addition, the recent climate change has affected the frequency and scale of rainfall in the global temperature, so it is necessary to prepare measures against it.</p><p>The past studies on drought have been conducted using drought indexes such as agricultural, meteorological, and hydrological methods to evaluate drought. The representative drought indexes for each drought are Palmer Drought Severity Index (PDSI), Standardized Precipitation Index (SPI), Agricultural drought is Crop Moisture Index (CMI), Crop Specific Drought Index (CSDI), Hydrological drought is Surface Drought Water Supply Index (SWSI), Reclamation Drought Index (RDI) and so on are used. However, these drought indices are only used as a method of predicting the depth of drought, and do not give the actual number of drought occurrences.</p><p>In this study, we want to determine the frequency of Mega-drought occurrences in consideration of the drought damage characteristics that occurred worldwide from 1900 to 2018. The drought damages in the world were used by EM-DAT (the Emergency Events Database) which manages disaster data in CRED (Centre for Research on the Epidemiology of Disasters). Drought damages occurred in the world from 1900 to 2018 occurred more than once/years in 146 countries. The duration of drought persistence occurred in the country continuously for at least one to 17 years. The purpose of this study is to propose the criteria for mega drought by using the past victim data in connection with the incidence frequency.</p><p>Acknowledges : This research was supported by a grant(2019-MOIS31-010) from Fundamental Technology Development Program for Extreme Disaster Response funded by Korean Ministry of Interior and Safety(MOIS).</p><div> </div>


2020 ◽  
Author(s):  
Eva Boergens ◽  
Andreas Güntner ◽  
Henryk Dobslaw ◽  
Christoph Dahle

<p class="western">In the last three years Central Europe experienced an ongoing severe drought. With the data of the GRACE Follow-On (GRACE-FO) mission we are able to quantify the water deficit of these years. Since May 2018 GRACE-FO continues the observations of GRACE (2002-2017) allowing to compare the most recent drought with earlier droughts in 2003 and 2015.</p> <p class="western">In July 2019 the water mass deficit in Central Europe amounted to -154 Gt, which has been the largest deficit in the whole GRACE and GRACE-FO time series. In November 2018 the deficit reached -138 Gt and in June 2020 -147 Gt. Comparing these deficits to the mean annual water storage variation of 162 Gt shows the severity of the ongoing drought. With such a water mass deficit, a fast recovery within one year cannot be expected. In comparison to this, the droughts of 2003 with a deficit of -55 Gt and of 2015 with a deficit of -111 Gt were less severe.</p> <p class="western">The GRACE and GRACE-FO total water storage data set also allows for analysing spatio-temporal drought patterns. In 2018 the drought was centred in in the South-West of Germany and neighbouring countries while parts of Poland were hardly affected by the drought. In 2018 the drought reached its largest extent only in late autumn. However, the exact onset of drought is not determinable due to missing data between July and October. Both in 2019 and 2020 the centre of the drought is located further East and the months with the largest deficit were July and June, respectively. Also in the later years, the drought was more evenly spread out over the whole of Central Europe.</p> <p class="western">Additionally, we compared the GRACE and GRACE-FO data to an external soil moisture index and to surface water drought indices for Lake Constance and Lake Müritz. To this end, we derive a drought index from the GRACE and GRACE-FO mass anomalies. For the whole time series, the GRACE drought index shows a high congruency to the soil moisture drought index. Overall, the surface water drought index also fits well together with the GRACE drought index. However, the comparison reveals the influence of regional effects on surface waters not observable with GRACE and GRACE-FO.</p>


2020 ◽  
Author(s):  
Seonyoung Park ◽  
Jongmin Yeom ◽  
Jeongho Lee ◽  
Jaese Lee ◽  
Jungho Im ◽  
...  

<p>Rice is a staple food in the North and South Koreas. Rice yield is closely related to water supply including irrigation, precipitation, and soil water. Drought typically occurs due to the lack of precipitation, and prolonged drought leads to the decrease of soil water, which results in plant water stress. Drought monitoring is crucial for agricultural mitigation because it enables us to estimate rice production in a timely manner. The purpose of this study is to suggest an optimal drought index for monitoring agricultural drought over North and South Koreas. Although North and South Koreas have similar climate conditions, they have different levels of infrastructure for agriculture such as irrigation facilities. In this study, nine satellite-based drought indices were used and evaluated based on in situ measurements at weather stations including Standardized Precipitation Index (SPI) and rice yield. Drought indices were calculated using the Global Land Data Assimilation System (GLDAS) soil moisture, Tropical Rainfall Measuring Mission (TRMM) precipitation, Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI). Since various drought indices have been developed with their own purpose, considering the characteristics of the study area under investigation, their applications for other regions are relatively limited. Thus, comparison of various drought indices is needed to identify an optimal drought index for a certain area. The measurable objectives of this research were to 1) compare the characteristics of drought depending on the properties of drought indices such as temperature, vegetation, precipitation, and soil moisture and 2) evaluate various drought indices using SPIs and rice yield data. The performance of the drought indices was evaluated using correlation coefficient values (R) for reference data (i.e., SPI and rice yield). As expected, drought indices including NDVI showed positive relationships with rice yield in both regions (averaged R=0.37). Meanwhile, temperature based drought indices showed negative relationships with rice yield in both regions because high temperature means high solar radiation, which is essential to rice production. While the correlation coefficient between precipitation based indices and rice yield was positive in North Korea (averaged R=0.34), it was negative in South Korea (averaged R=-0.26). The opposite pattern by area is because South Korea (117,457 irrigation Canals) has more artificial controls over agricultural land such as irrigation facilities and reservoirs than North Korea (51,400 irrigation Canals).</p>


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1375 ◽  
Author(s):  
Ali Ajaz ◽  
Saleh Taghvaeian ◽  
Kul Khand ◽  
Prasanna H. Gowda ◽  
Jerry E. Moorhead

A new agricultural drought index was developed for monitoring drought impacts on agriculture in Oklahoma. This new index, called the Soil Moisture Evapotranspiration Index (SMEI), estimates the departure of aggregated root zone moisture from reference evapotranspiration. The SMEI was estimated at five locations across Oklahoma representing different climates. The results showed good agreement with existing soil moisture-based (SM) and meteorological drought indices. In addition, the SMEI had improved performance compared to other indices in capturing the effects of temporal and spatial variations in drought. The relationship with crop production is a key characteristic of any agricultural drought index. The correlations between winter wheat production and studied drought indices estimated during the growing period were investigated. The correlation coefficients were largest for SMEI (r > 0.9) during the critical crop growth stages when compared to other drought indices, and r decreased by moving from semi-arid to more humid regions across Oklahoma. Overall, the results suggest that the SMEI can be used effectively for monitoring the effects of drought on agriculture in Oklahoma.


2020 ◽  
Vol 22 (4) ◽  
pp. 937-956
Author(s):  
Odai Al Balasmeh ◽  
Richa Babbar ◽  
Tapas Karmaker

Abstract Wadi Shueib catchment in Jordan is a water stress area and climate change is creating a further deficiency in precipitation, streamflow, and soil moisture; which are a deterrent to agriculture production in the area. In order to analyze the drought-like situation in the area, a hybrid drought index (HDI) has been developed considering the combined effect of these three variables. Fuzzy analytical hierarchy process (F-AHP) and entropy weight methods were carried out to develop a hybrid drought index (HDI) which combines meteorological, hydrological, and agricultural drought indices based on precipitation, streamflow, and soil moisture data in the area. The wavelet transform (WT) with cross wavelet (XCT) and wavelet coherence (WTC) were applied to investigate the interaction and the relations between the HDI index, drought indices, and large-scale sunspot activity Niño3.4 index. The results show that HDI can easily capture the trend of the drought-like conditions in the area based on the available data. The trend analysis of HDI revealed an increasing trend in the drought incidences in the near future. The study can be used as an early alarm for drought in the area, which can be helpful in the decision-making process towards water resources planning and management in the future.


Author(s):  
M. Yu ◽  
Q. Li ◽  
G. Lu ◽  
H. Wang ◽  
P. Li

Abstract. Accurate and reliable drought monitoring is of primary importance for drought mitigation and reduction of social-ecological vulnerability. The aim of the paper was to propose a short-term/long-term composited drought index (CDI) which could be widely used for drought monitoring and early warning in China. In the study, the upper Huaihe River basin above the Xixian gauge station, which has been hit by severe droughts frequently in recent decades, was selected as the case study site. The short-term CDI was developed by the Principle Component Analysis of the self-calibrating Palmer Drought Severity Index (sc-PDSI), the 1- and 3-month Standardized Precipitation Evapotranspiration Index (SPEI), Z Index (ZIND), the Soil Moisture Index (SMI) with the long-term CDI being formulated by use of the self-calibrating Palmer Hydrology Drought Index (sc-PHDI), the 6-, 12-, 18- and 24-month SPEI, the Standardized Streamflow Index (SSI), the SMI. The sc-PDSI, the PHDI, the ZIND, the SPEI on a monthly time scale were calculated based on the monthly air temperature and precipitation, and the monthly SMI and SSI were computed based on the simulated soil moisture and runoff by the distributed Xinanjiang model. The thresholds of the short-term/long-term CDI were determined according to frequency statistics of different drought indices. Finally, the feasibility of the two CDIs was investigated against the scPDSI, the SPEI and the historical drought records. The results revealed that the short-term/long-term CDI could capture the onset, severity, persistence of drought events very well with the former being better at identifying the dynamic evolution of drought condition while the latter better at judging the changing trend of drought over a long time period.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 74 ◽  
Author(s):  
Zhaofei Liu ◽  
Zhijun Yao ◽  
Heqing Huang ◽  
Batbuyan Batjav ◽  
Rui Wang

Extreme cold and meteorological drought in the Mongolian Plateau (MP) were investigated during 1969–2017. Several drought indices were evaluated by analyzing recorded historical drought data in the Chinese region of the MP. The evaluated drought indices were then applied to detect drought characteristics in the entire MP. The trends of extreme cold indices showed that the climate of the MP has warmed during the past 49 years; however, the frequency of cold day/night has increased in the Mongolian region. The climate of Mongolia has also become colder in the spring season. The comprehensive meteorological drought index (CMDI) and the standardized precipitation index with a six-month scale (SPI6) exhibited better performances, showing high consistency between the spatial patterns of the two indices. However, drought represented by the SPI6 was enhanced greater than that expressed by the CMDI. Drought in the MP has been enhanced during the past 49 years, particularly in the Ordos and Alashan plateaus and the Xiliao River basin in China. Moreover, drought has been enhanced from August to October, particularly in the Mongolian region. However, spring drought has shown a weakening trend, which has been beneficial for agriculture and husbandry sectors in some regions of the MP.


Sign in / Sign up

Export Citation Format

Share Document