scholarly journals Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale

2016 ◽  
Vol 20 (1) ◽  
pp. 39-54 ◽  
Author(s):  
W. A. Timms ◽  
R. Crane ◽  
D. J. Anderson ◽  
S. Bouzalakos ◽  
M. Whelan ◽  
...  

Abstract. Evaluating the possibility of leakage through low-permeability geological strata is critically important for sustainable water supplies, the extraction of fuels from coal and other strata, and the confinement of waste within the earth. The current work demonstrates that relatively rapid and realistic vertical hydraulic conductivity (Kv) measurements of aquitard cores using accelerated gravity can constrain and compliment larger-scale assessments of hydraulic connectivity. Steady-state fluid velocity through a low-K porous sample is linearly related to accelerated gravity (g level) in a centrifuge permeameter (CP) unless consolidation or geochemical reactions occur. A CP module was custom designed to fit a standard 2 m diameter geotechnical centrifuge (550 g maximum) with a capacity for sample dimensions up to 100 mm diameter and 200 mm length, and a total stress of  ∼  2 MPa at the base of the core. Formation fluids were used as influent to limit any shrink–swell phenomena, which may alter the permeability. Kv results from CP testing of minimally disturbed cores from three sites within a clayey-silt formation varied from 10−10 to 10−7  m s−1 (number of samples, n = 18). Additional tests were focussed on the Cattle Lane (CL) site, where Kv within the 99 % confidence interval (n = 9) was 1.1 × 10−9 to 2.0 × 10−9 m s−1. These Kv results were very similar to an independent in situ Kv method based on pore pressure propagation though the sequence. However, there was less certainty at two other core sites due to limited and variable Kv data. Blind standard 1 g column tests underestimated Kv compared to CP and in situ Kv data, possibly due to deionised water interactions with clay, and were more time-consuming than CP tests. Our Kv results were compared with the set-up of a flow model for the region, and considered in the context of heterogeneity and preferential flow paths at site and formation scale. Reasonable assessments of leakage and solute transport through aquitards over multi-decadal timescales can be achieved by accelerated core testing together with complimentary hydrogeological monitoring, analysis, and modelling.

2015 ◽  
Vol 12 (3) ◽  
pp. 2799-2841
Author(s):  
W. A. Timms ◽  
R. Crane ◽  
D. J. Anderson ◽  
S. Bouzalakos ◽  
M. Whelan ◽  
...  

Abstract. Evaluating the possibility of leakage through low permeability geological strata is critically important for sustainable water supplies, the extraction of fuels from strata such as coal beds, and the confinement of waste within the earth. The current work demonstrates that relatively rapid and reliable hydraulic conductivity (K) measurement of aquitard cores using accelerated gravity can inform and constrain larger scale assessments of hydraulic connectivity. Steady state fluid velocity through a low K porous sample is linearly related to accelerated gravity (g-level) in a centrifuge permeameter (CP) unless consolidation or geochemical reactions occur. The CP module was custom designed to fit a standard 2 m diameter geotechnical centrifuge (550 g maximum) with a capacity for sample dimensions of 30 to 100 mm diameter and 30 to 200 mm in length, and a maximum total stress of ~2 MPa at the base of the core. Formation fluids were used as influent to limit any shrink–swell phenomena which may alter the permeability. Vertical hydraulic conductivity (Kv) results from CP testing of cores from three sites within the same regional clayey silt formation varied (10−7 to 10−9 m s−1, n = 14). Results at one of these sites (1.1 × 10−10 to 3.5 × 10−9 m s−1, n = 5) that were obtained in < 24 h were similar to in situ Kv values (3 × 10−9 m s−1) from pore pressure responses over several weeks within a 30 m clayey sequence. Core scale and in situ Kv results were compared with vertical connectivity within a regional flow model, and considered in the context of heterogeneity and preferential flow paths at site and formation scale. More reliable assessments of leakage and solute transport though aquitards over multi-decadal timescales can be achieved by accelerated core testing together with advanced geostatistical and numerical methods.


2014 ◽  
Vol 11 (3) ◽  
pp. 3155-3212 ◽  
Author(s):  
W. A. Timms ◽  
R. Crane ◽  
D. J. Anderson ◽  
S. Bouzalakos ◽  
M. Whelan ◽  
...  

Abstract. Evaluating the possibility of leakage through low permeability geological strata is critically important for sustainable water supplies, extraction of fuels from strata such as coal beds, and confinement of waste within the earth. Characterizing low or negligible flow rates and transport of solutes can require impractically long periods of field or laboratory testing, but is necessary for evaluations over regional areas and over multi-decadal timescales. The current work reports a custom designed centrifuge permeameter (CP) system, which can provide relatively rapid and reliable hydraulic conductivity (K) measurement compared to column permeameter tests at standard gravity (1g). Linear fluid velocity through a low K porous sample is linearly related to g-level during a CP flight unless consolidation or geochemical reactions occur. The CP module is designed to fit within a standard 2 m diameter, geotechnical centrifuge with a capacity for sample dimensions of 30 to 100 mm diameter and 30 to 200 mm in length. At maximum RPM the resultant centrifugal force is equivalent to 550g at base of sample or a total stress of ~2 MPa. K is calculated by measuring influent and effluent volumes. A custom designed mounting system allows minimal disturbance of drill core samples and a centrifugal force that represents realistic in situ stress conditions is applied. Formation fluids were used as influent to limit any shrink-swell phenomena which may alter the resultant K value. Vertical hydraulic conductivity (Kv) results from CP testing of core from the sites in the same clayey silt formation varied (10−7 to 10−9 m s−1, n = 14) but higher than 1g column permeameter tests of adjacent core using deionized water (10−9 to 10−11 m s−1, n = 7). Results at one site were similar to in situ Kv values (3 × 10−9 m s−1) from pore pressure responses within a 30 m clayey sequence in a homogenous area of the formation. Kv sensitivity to sample heterogeneity was observed, and anomalous flow via preferential pathways could be readily identified. Results demonstrate the utility of centrifuge testing for measuring minimum K values that can contribute to assessments of geological formations at large scale. The importance of using realistic stress conditions and influent geochemistry during hydraulic testing is also demonstrated.


2021 ◽  
Author(s):  
Amine Ouhechou ◽  
Nathalie Philippon ◽  
Béatrice Morel

&lt;p&gt;Solar radiation incident on the Earth's surface is important for the functioning of tropical forests, as it affects the availability of light and water. Due to the lack of in-situ data in tropical forest environments, satellite products and reanalyses are the only ways to estimate solar radiation on a regional scale. An intercomparison of five satellite databases including CERES-EBAF, CERES-SYN1deg, CMSAF-SARAH, CMSAF-CLARA, CAMS-JADE as well as the ERA5 reanalysis, is carried out for the Atlantic coast of Central Africa by evaluating them against two in-situ data sets: the monthly FAOCLIM2 database and original infra-daily data from meteorological stations set up within the framework of ecoclimatic projects. From this inter-comparison we show the differences between these six products and with in-situ data from monthly to daily scales. We also show that the Atlantic coast of Central Africa receives the least amount of solar radiation in all products compared to other regions of Central Africa.&lt;/p&gt;


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2246
Author(s):  
Georgia Charalampous ◽  
Efsevia Fragkou ◽  
Konstantinos A. Kormas ◽  
Alexandre B. De Menezes ◽  
Paraskevi N. Polymenakou ◽  
...  

The diversity and degradation capacity of hydrocarbon-degrading consortia from surface and deep waters of the Eastern Mediterranean Sea were studied in time-series experiments. Microcosms were set up in ONR7a medium at in situ temperatures of 25 °C and 14 °C for the Surface and Deep consortia, respectively, and crude oil as the sole source of carbon. The Deep consortium was additionally investigated at 25 °C to allow the direct comparison of the degradation rates to the Surface consortium. In total, ~50% of the alkanes and ~15% of the polycyclic aromatic hydrocarbons were degraded in all treatments by Day 24. Approximately ~95% of the total biodegradation by the Deep consortium took place within 6 days regardless of temperature, whereas comparable levels of degradation were reached on Day 12 by the Surface consortium. Both consortia were dominated by well-known hydrocarbon-degrading taxa. Temperature played a significant role in shaping the Deep consortia communities with Pseudomonas and Pseudoalteromonas dominating at 25 °C and Alcanivorax at 14 °C. Overall, the Deep consortium showed a higher efficiency for hydrocarbon degradation within the first week following contamination, which is critical in the case of oil spills, and thus merits further investigation for its exploitation in bioremediation technologies tailored to the Eastern Mediterranean Sea.


2000 ◽  
Vol 33 (2) ◽  
pp. 344-349 ◽  
Author(s):  
Christopher F. Snook ◽  
Michael D. Purdy ◽  
Michael C. Wiener

A commercial crystallization robot has been modified for use in setting up sitting-drop vapor-diffusion crystallization experiments, and for setting up protein crystallization screensin situ. The primary aim of this effort is the automated screening of crystallization of integral membrane proteins in detergent-containing solutions. However, the results of this work are of general utility to robotic liquid-handling systems. Sources of error that can prevent the accurate dispensing and mixing of solutions have been identified, and include local environmental, machine-specific and solution conditions. Solutions to each of these problems have been developed and implemented.


2013 ◽  
Vol 45 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Weihong Dong ◽  
Gengxin Ou ◽  
Xunhong Chen ◽  
Zhaowei Wang

In this study, in situ and on-site permeameter tests were conducted in Clear Creek, Nebraska, USA to evaluate the effect of water temperature on streambed vertical hydraulic conductivity Kv. Fifty-two sediment cores were tested. Five of them were transferred to the laboratory for a series of experiments to evaluate the effect of water temperature on Kv. Compared with in situ tests, 42 out of the 52 tests have higher Kv values for on-site tests. The distribution of water temperature at the approximately 50 cm depth of streambed along the sand bar was investigated in the field. These temperatures had values in the range 14–19 °C with an average of 16 °C and had an increasing trend along the stream flow. On average, Kv values of the streambed sediments in the laboratory tests increase by 1.8% per 1 °C increase in water temperature. The coarser sandy sediments show a greater increase extent of the Kv value per 1 °C increase in water temperature. However, there is no distinct increasing trend of Kv value for sediment containing silt and clay layers.


2002 ◽  
Vol 30 (2) ◽  
pp. 78-82 ◽  
Author(s):  
M. Beier ◽  
M. Baum ◽  
H. Rebscher ◽  
R. Mauritz ◽  
A. Wixmerten ◽  
...  

Concepts and results are described for the use of a single, but extremely flexible, probing tool to address a wide variety of genomic questions. This is achieved by transforming genomic questions into a software file that is used as the design scheme for potentially any genomic assay in a microarray format. Microarray fabrication takes place in three-dimensional microchannel reaction carriers by in situ synthesis based on spatial light modulation. This set-up allows for maximum flexibility in design and realization of genomic assays. Flexibility is achieved at the molecular, genomic and assay levels. We have applied this technology to expression profiling and genotyping experiments.


2015 ◽  
Vol 15 (17) ◽  
pp. 10087-10092 ◽  
Author(s):  
L. Kattner ◽  
B. Mathieu-Üffing ◽  
J. P. Burrows ◽  
A. Richter ◽  
S. Schmolke ◽  
...  

Abstract. In 1997 the International Maritime Organisation (IMO) adopted MARPOL Annex VI to prevent air pollution by shipping emissions. It regulates, among other issues, the sulfur content in shipping fuels, which is transformed into the air pollutant sulfur dioxide (SO2) during combustion. Within designated Sulfur Emission Control Areas (SECA), the sulfur content was limited to 1 %, and on 1 January 2015, this limit was further reduced to 0.1 %. Here we present the set-up and measurement results of a permanent ship emission monitoring site near Hamburg harbour in the North Sea SECA. Trace gas measurements are conducted with in situ instruments and a data set from September 2014 to January 2015 is presented. By combining measurements of carbon dioxide (CO2) and SO2 with ship position data, it is possible to deduce the sulfur fuel content of individual ships passing the measurement station, thus facilitating the monitoring of compliance of ships with the IMO regulations. While compliance is almost 100 % for the 2014 data, it decreases only very little in 2015 to 95.4 % despite the much stricter limit. We analysed more than 1400 ship plumes in total and for months with favourable conditions, up to 40 % of all ships entering and leaving Hamburg harbour could be checked for their sulfur fuel content.


Sign in / Sign up

Export Citation Format

Share Document