scholarly journals The HOOPLA toolbox: a HydrOlOgical Prediction LAboratory to explore ensemble rainfall-runoff modeling

2020 ◽  
Author(s):  
Antoine Thiboult ◽  
Gregory Seiller ◽  
Carine Poncelet ◽  
François Anctil

Abstract. This technical report introduces the HydrOlOgical Prediction LAboratory (HOOPLA) developed at Université Lavalfor ensemble lumped hydrological modelling. HOOPLA includes functionalities to perform calibration, simulation, and forecast for multiple hydrological models and various time steps. It includes a range of hydrometeorological tools such as calibration algorithms, data assimilation techniques, potential evapotranspiration formulas and a snow accounting routine. HOOPLA is a flexible framework coded in MATLAB that allows easy integration of user-defined hydrometeorological tools. This report also illustrates HOOPLA's functionalities using a set of 31 Canadian catchments.

2012 ◽  
Vol 13 (1) ◽  
pp. 122-139 ◽  
Author(s):  
Jin Teng ◽  
Jai Vaze ◽  
Francis H. S. Chiew ◽  
Biao Wang ◽  
Jean-Michel Perraud

Abstract This paper assesses the relative uncertainties from GCMs and from hydrological models in modeling climate change impact on runoff across southeast Australia. Five lumped conceptual daily rainfall–runoff models are used to model runoff using historical daily climate series and using future climate series obtained by empirically scaling the historical climate series informed by simulations from 15 GCMs. The majority of the GCMs project a drier future for this region, particularly in the southern parts, and this is amplified as a bigger reduction in the runoff. The results indicate that the uncertainty sourced from the GCMs is much larger than the uncertainty in the rainfall–runoff models. The variability in the climate change impact on runoff results for one rainfall–runoff model informed by 15 GCMs (an about 28%–35% difference between the minimum and maximum results for mean annual, mean seasonal, and high runoff) is considerably larger than the variability in the results between the five rainfall–runoff models informed by 1 GCM (a less than 7% difference between the minimum and maximum results). The difference between the rainfall–runoff modeling results is larger in the drier regions for scenarios of big declines in future rainfall and in the low-flow characteristics. The rainfall–runoff modeling here considers only the runoff sensitivity to changes in the input climate data (primarily daily rainfall), and the difference between the hydrological modeling results is likely to be greater if potential changes in the climate–runoff relationship in a warmer and higher CO2 environment are modeled.


2018 ◽  
Vol 10 (12) ◽  
pp. 1872 ◽  
Author(s):  
Lu Yi ◽  
Wanchang Zhang ◽  
Xiangyang Li

To compare the effectivenesses of different precipitation datasets on hydrological modelling, five precipitation datasets derived from various approaches were used to simulate a two-week runoff process after a heavy rainfall event in the Wangjiaba (WJB) watershed, which covers an area of 30,000 km2 in eastern China. The five precipitation datasets contained one traditional in situ observation, two satellite products, and two predictions obtained from the Numerical Weather Prediction (NWP) models. They were the station observations collected from the China Meteorological Administration (CMA), the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM IMERG), the merged data of the Climate Prediction Center Morphing (merged CMORPH), and the outputs of the Weather Research and Forecasting (WRF) model and the WRF four-dimensional variational (4D-Var) data assimilation system, respectively. Apart from the outlet discharge, the simulated soil moisture was also assessed via the Soil Moisture Active Passive (SMAP) product. These investigations suggested that (1) all the five precipitation datasets could yield reasonable simulations of the studied rainfall-runoff process. The Nash-Sutcliffe coefficients reached the highest value (0.658) with the in situ CMA precipitation and the lowest value (0.464) with the WRF-predicted precipitation. (2) The traditional in situ observation were still the most reliable precipitation data to simulate the study case, whereas the two NWP-predicted precipitation datasets performed the worst. Nevertheless, the NWP-predicted precipitation is irreplaceable in hydrological modelling because of its fine spatiotemporal resolutions and ability to forecast precipitation in the future. (3) Gauge correction and 4D-Var data assimilation had positive impacts on improving the accuracies of the merged CMORPH and the WRF 4D-Var prediction, respectively, but the effectiveness of the latter on the rainfall-runoff simulation was mainly weakened by the poor quality of the GPM IMERG used in the study case. This study provides a reference for the applications of different precipitation datasets, including in situ observations, remote sensing estimations and NWP simulations, in hydrological modelling.


2019 ◽  
Vol 23 (12) ◽  
pp. 5089-5110 ◽  
Author(s):  
Frederik Kratzert ◽  
Daniel Klotz ◽  
Guy Shalev ◽  
Günter Klambauer ◽  
Sepp Hochreiter ◽  
...  

Abstract. Regional rainfall–runoff modeling is an old but still mostly outstanding problem in the hydrological sciences. The problem currently is that traditional hydrological models degrade significantly in performance when calibrated for multiple basins together instead of for a single basin alone. In this paper, we propose a novel, data-driven approach using Long Short-Term Memory networks (LSTMs) and demonstrate that under a “big data” paradigm, this is not necessarily the case. By training a single LSTM model on 531 basins from the CAMELS dataset using meteorological time series data and static catchment attributes, we were able to significantly improve performance compared to a set of several different hydrological benchmark models. Our proposed approach not only significantly outperforms hydrological models that were calibrated regionally, but also achieves better performance than hydrological models that were calibrated for each basin individually. Furthermore, we propose an adaption to the standard LSTM architecture, which we call an Entity-Aware-LSTM (EA-LSTM), that allows for learning catchment similarities as a feature layer in a deep learning model. We show that these learned catchment similarities correspond well to what we would expect from prior hydrological understanding.


2016 ◽  
Vol 17 (8) ◽  
pp. 2259-2274 ◽  
Author(s):  
Peng Bai ◽  
Xiaomang Liu ◽  
Tiantian Yang ◽  
Fadong Li ◽  
Kang Liang ◽  
...  

Abstract Potential evapotranspiration (PET), which determines the upper limit of actual evapotranspiration (AET), is a necessary input in monthly hydrological models. In this study, the sensitivities of monthly hydrological models to different PET inputs are investigated in 37 catchments under different climatic conditions. Four types of PET estimation methods (i.e., Penman–Monteith, Hargreaves–Samani, Jensen–Haise, and Hamon) give significantly different PET values in the 37 catchments. However, similar runoff simulations are produced based on different PET inputs in both nonhumid and humid regions. It is found that parameter calibration of the hydrological model can eliminate the influences of different PET inputs on runoff simulations in both nonhumid and humid regions. However, the influences of parameter calibration on the simulated water balance components, including AET and water storage change (WSC), are different in nonhumid and humid regions. In nonhumid regions, simulated runoff, AET, and WSC are similar using different PET inputs. In humid regions, simulated AET and WSC using different PET inputs are significantly different, and simulated runoff and the sums of AET and WSC are similar to each other. It is suggested that the choice of PET inputs for monthly hydrological models be based on the selected region and the relevant hydrological practices. In runoff modeling, different PET inputs can produce similar runoff simulations in both nonhumid and humid regions. However, when estimating AET and WSC in humid regions, different PET inputs will result in significantly different AET and WSC simulations, which should be noted by model users.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 128 ◽  
Author(s):  
Katarina Lavtar ◽  
Nejc Bezak ◽  
Mojca Šraj

Rainfall-runoff modeling is nowadays applied for water resources management, water system design, real-time forecasting, flood design and can be carried out by using different types of hydrological models. In this study, we focused on lumped conceptual hydrological models and their performance in diverse sub-catchments of the Sava River in Slovenia, related to their size and non-homogeneity. We evaluated the difference between modeled and measured discharges of selected discharge gauging stations, using different model performance criteria that are usually applied in hydrology, connecting the results to geospatial analysis of geological and hydrogeological characteristics, land use, runoff potential, proportion of agglomeration and various meteorological variables. Better model performance was obtained for catchments with a higher runoff potential and with less variations in meteorological variables. Regarding the number of used parameters, the results indicated that the tested Genie Rural 6-parameter Journalier (GR6J) model with 6 parameters performed better than the Genie Rural 4-parameter Journalier (GR4J) model with 4 parameters, especially in the case of larger sub-catchments. These results illustrate the comprehensive nature of lumped models. Thus, they yield good performance in case of the catchments with indistinguishable characteristics.


Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 57
Author(s):  
Konstantinos Vantas ◽  
Epaminondas Sidiropoulos

The identification and recognition of temporal rainfall patterns is important and useful not only for climatological studies, but mainly for supporting rainfall–runoff modeling and water resources management. Clustering techniques applied to rainfall data provide meaningful ways for producing concise and inclusive pattern classifications. In this paper, a timeseries of rainfall data coming from the Greek National Bank of Hydrological and Meteorological Information are delineated to independent rainstorms and subjected to cluster analysis, in order to identify and extract representative patterns. The computational process is a custom-developed, domain-specific algorithm that produces temporal rainfall patterns using common characteristics from the data via fuzzy clustering in which (a) every storm may belong to more than one cluster, allowing for some equivocation in the data, (b) the number of the clusters is not assumed known a priori but is determined solely from the data and, finally, (c) intra-storm and seasonal temporal distribution patterns are produced. Traditional classification methods include prior empirical knowledge, while the proposed method is fully unsupervised, not presupposing any external elements and giving results superior to the former.


Sign in / Sign up

Export Citation Format

Share Document