scholarly journals The importance of non-stationary multiannual periodicities in the NAO index for forecasting water resource extremes

2021 ◽  
Author(s):  
William Rust ◽  
John Bloomfield ◽  
Mark Cuthbert ◽  
Ron Corstanje ◽  
Ian Holman

Abstract. Drought forecasting and early warning systems for water resource extremes are increasingly important tools in water resource management, particularly in Europe where increased population density and climate change are expected to place greater pressures on water supply. In this context, the North Atlantic Oscillation (NAO) ais often used to indicate future water resource behaviours (including droughts) over Europe, given its dominant control on winter rainfall totals in the North Atlantic region. Recent hydroclimate research has focused on the role of multiannual periodicities in the NAO in driving low frequency behaviours in some water resources, suggesting that notable improvements to lead-times in forecasting may be possible by incorporating these multiannual relationships. However, the importance of multiannual NAO periodicities for driving water resource behaviour, and the feasibility of this relationship for indicating future droughts, has yet to be assessed in the context of known non-stationarities that are internal to the NAO and its influence on European meteorological processes. Here we quantify the time-frequency relationship between the NAO and a large dataset of water resources records to identify key non-stationarities that have dominated multiannual behaviour of water resource extremes over recent decades. The most dominant of these is a 7.5-year periodicity in water resource extremes since approximately 1970 but which has been diminishing since 2005. Furthermore, we show that the non-stationary relationship between the NAO and European rainfall is clearly expressed at multiannual periodicities in the water resource records assessed. These multiannual behaviours are found to have modulated historical water resource anomalies to an extent that is comparable to the projected effects of a worst-case climate change scenario. Furthermore, there is limited systematic understanding in existing atmospheric research for non-stationaries in these periodic behaviours which poses considerable implications to existing water resource forecasting and projection systems, as well as the use of these periodic behaviours as an indicator of future water resource drought.

2019 ◽  
Vol 11 (22) ◽  
pp. 6463 ◽  
Author(s):  
Li ◽  
Yin ◽  
Zhang ◽  
Croke ◽  
Guo ◽  
...  

The Beijing-Tianjin-Hebei (Jingjinji) region is the most densely populated region in China and suffers from severe water resource shortage, with considerable water-related issues emerging under a changing context such as construction of water diversion projects (WDP), regional synergistic development, and climate change. To this end, this paper develops a framework to examine the water resource security for 200 counties in the Jingjinji region under these changes. Thus, county-level water resource security is assessed in terms of the long-term annual mean and selected typical years (i.e., dry, normal, and wet years), with and without the WDP, and under the current and projected future (i.e., regional synergistic development and climate change). The outcomes of such scenarios are assessed based on two water-crowding indicators, two use-to-availability indicators, and one composite indicator. Results indicate first that the water resources are distributed unevenly, relatively more abundant in the northeastern counties and extremely limited in the other counties. The water resources are very limited at the regional level, with the water availability per capita and per unit gross domestic product (GDP) being only 279/290 m3 and 46/18 m3 in the current and projected future scenarios, respectively, even when considering the WDP. Second, the population carrying capacity is currently the dominant influence, while economic development will be the controlling factor in the future for most middle and southern counties. This suggests that significant improvement in water-saving technologies, vigorous replacement of industries from high to low water consumption, as well as water from other supplies for large-scale applications are greatly needed. Third, the research identifies those counties most at risk to water scarcity and shows that most of them can be greatly relieved after supplementation by the planned WDP. Finally, more attention should be paid to the southern counties because their water resources are not only limited but also much more sensitive and vulnerable to climate change. This work should benefit water resource management and allocation decisions in the Jingjinji region, and the proposed assessment framework can be applied to other similar problems.


2013 ◽  
Vol 26 (16) ◽  
pp. 6046-6066 ◽  
Author(s):  
Yalin Fan ◽  
Isaac M. Held ◽  
Shian-Jiann Lin ◽  
Xiaolan L. Wang

Abstract Surface wind (U10) and significant wave height (Hs) response to global warming are investigated using a coupled atmosphere–wave model by perturbing the sea surface temperatures (SSTs) with anomalies generated by the Working Group on Coupled Modeling (WGCM) phase 3 of the Coupled Model Intercomparison Project (CMIP3) coupled models that use the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4)/Special Report on Emissions Scenarios A1B (SRES A1B) scenario late in the twenty-first century. Several consistent changes were observed across all four realizations for the seasonal means: robust increase of U10 and Hs in the Southern Ocean for both the austral summer and winter due to the poleward shift of the jet stream; a dipole pattern of the U10 and Hs with increases in the northeast sector and decreases at the midlatitude during boreal winter in the North Atlantic due to the more frequent occurrence of the positive phases of the North Atlantic Oscillation (NAO); and strong decrease of U10 and Hs in the tropical western Pacific Ocean during austral summer, which might be caused by the joint effect of the weakening of the Walker circulation and the large hurricane frequency decrease in the South Pacific. Changes of the 99th percentile U10 and Hs are twice as strong as changes in the seasonal means, and the maximum changes are mainly dominated by the changes in hurricanes. Robust strong decreases of U10 and Hs in the South Pacific are obtained because of the large hurricane frequency decrease, while the results in the Northern Hemisphere basins differ among the models. An additional sensitivity experiment suggests that the qualitative response of U10 and Hs is not affected by using SST anomalies only and maintaining the radiative forcing unchanged (using 1980 values), as in this study.


2018 ◽  
Vol 52 (1-2) ◽  
pp. 417-438 ◽  
Author(s):  
Ralf Hand ◽  
Noel S. Keenlyside ◽  
Nour-Eddine Omrani ◽  
Jürgen Bader ◽  
Richard J. Greatbatch

2011 ◽  
Vol 24 (23) ◽  
pp. 6054-6076 ◽  
Author(s):  
Haiyan Teng ◽  
Grant Branstator ◽  
Gerald A. Meehl

Abstract Predictability of the Atlantic meridional overturning circulation (AMOC) and associated oceanic and atmospheric fields on decadal time scales in the Community Climate System Model, version 3 (CCSM3) at T42 resolution is quantified with a 700-yr control run and two 40-member “perfect model” climate change experiments. After taking into account both the mean and spread about the mean of the forecast distributions and allowing for the possibility of time-evolving modes, the natural variability of the AMOC is found to be predictable for about a decade; beyond that range the forced predictability resulting from greenhouse gas forcing becomes dominant. The upper 500-m temperature in the North Atlantic is even more predictable than the AMOC by several years. This predictability is associated with subsurface and sea surface temperature (SST) anomalies that propagate in an anticlockwise direction along the subpolar gyre and tend to be prominent during the 10 yr following peaks in the amplitude of AMOC anomalies. Predictability in the North Atlantic SST mainly resides in the ensemble mean signals after three to four forecast years. Analysis suggests that in the CCSM3 the subpolar gyre SST anomalies associated with the AMOC variability can influence the atmosphere and produce surface climate predictability that goes beyond the ENSO time scale. However, the resulting initial-value predictability in the atmosphere is very weak.


2020 ◽  
Vol 33 (18) ◽  
pp. 8003-8023
Author(s):  
Danqing Huang ◽  
Aiguo Dai ◽  
Jian Zhu

AbstractAfter a CO2 increase, whether the early transient and final equilibrium climate change patterns are similar has major implications. Here, we analyze long-term simulations from multiple climate models under increased CO2, together with the extended simulations from CMIP5, to compare the transient and equilibrium climate change patterns under different forcing scenarios. Results show that the normalized warming patterns (per 1 K of global warming) are broadly similar among different forcing scenarios (including abrupt 2 × CO2, 4 × CO2, and 1% CO2 increase per year) and during different time periods, except for the first 50 years or so when warming is weaker over the North Atlantic and Southern Ocean but stronger over most continents. During the first 200 years, this consistency is stronger over land than over ocean, but is lower in midlatitudes than other regions. Normalized precipitation change patterns are also similar, albeit to a lesser degree, among different forcing scenarios and across different time periods, although noticeable differences exist during the first few hundred years with smaller increases over the tropical Pacific. Precipitation over many subtropical oceans and land areas decreases consistently under different forcing scenarios and over all time periods. In particular, the transient and near-equilibrium change patterns for both surface air temperature and precipitation are similar over most of the globe, except for the North Atlantic warming hole, which is mainly a transient feature. The Arctic amplification and land–ocean warming contrast are largest during the first 100–200 years after CO2 quadrupling but they still exist in the equilibrium response.


2008 ◽  
Vol 15 ◽  
pp. 57-60 ◽  
Author(s):  
Peter Rasmussen ◽  
Mikkel Ulfeldt Hede ◽  
Nanna Noe-Nygaard ◽  
Annemarie L. Clarke ◽  
Rolf D. Vinebrooke

The need for accurate predictions of future environmental change under conditions of global warming has led to a great interest in the most pronounced climate change known from the Holocene: an abrupt cooling event around 8200 years before present (present = A.D. 1950), also known as the ‘8.2 ka cooling event’ (ka = kilo-annum = 1000 years). This event has been recorded as a negative δ18O excursion in the central Greenland ice cores (lasting 160 years with the lowest temperature at 8150 B.P.; Johnsen et al. 1992; Dansgaard 1993; Alley et al. 1997; Thomas et al. 2007) and in a variety of other palaeoclimatic archives including lake sediments, ocean cores, speleothems, tree rings, and glacier oscillations from most of the Northern Hemisphere (e.g. Alley & Ágústsdóttir 2005; Rohling & Pälike 2005). In Greenland the maximum cooling was estimated to be 6 ± 2°C (Alley et al. 1997) while in southern Fennoscandia and the Baltic countries pollenbased quantitative temperature reconstructions indicate a maximum annual mean temperature decrease of around 1.5°C (e.g. Seppä et al. 2007). Today there is a general consensus that the primary cause of the cooling event was the final collapse of the Laurentide ice sheet near Hudson Bay and the associated sudden drainage of the proglacial Lake Agassiz into the North Atlantic Ocean around 8400 B.P. (Fig. 1; Barber et al. 1999; Kleiven et al. 2008). This freshwater outflow, estimated to amount to c. 164,000 km3 of water, reduced the strength of the North Atlantic thermohaline circulation and thereby the heat transported to the North Atlantic region, resulting in an atmospheric cooling (Barber et al. 1999; Clark et al. 2001; Teller et al. 2002). The climatic consequences of this meltwater flood are assumed to be a good geological analogue for future climate-change scenarios, as a freshening of the North Atlantic is projected by almost all global-warming models (e.g. Wood et al. 2003; IPCC 2007) and is also currently being registered in the region (Curry et al. 2003). In an ongoing project, the influence of the 8.2 ka cooling event on a Danish terrestrial and lake ecosystem is being investigated using a variety of biological and geochemical proxy data from a sediment core extracted from Højby Sø, north-west Sjælland (Fig. 2). Here we present data on changes in lake hydrology and terrestrial vegetation in response to climate change, inferred from macrofossil data and pollen analysis, respectively.


2011 ◽  
Vol 8 (3) ◽  
pp. 4459-4493 ◽  
Author(s):  
J. Lorenzo-Lacruz ◽  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno ◽  
J. C. González-Hidalgo ◽  
E. Morán-Tejeda

Abstract. In this study we analyzed the influence of the North Atlantic Oscillation (NAO) on the streamflow in 187 sub-basins of the Iberian Peninsula. Monthly and one-month lagged correlations were conducted to assess the spatio-temporal extent of the NAO influence on Iberian river discharges. Analysis of the persistence of the winter NAO throughout the year was also undertaken, together with analysis of streamflow anomalies during positive and negative NAO phases. Moving-window correlation analyses were conducted to assess potential changes in the temporal evolution of the NAO influence on Iberian streamflows. The results show that the NAO has a large impact on surface water resources throughout the Iberian Peninsula during winter, and in the Atlantic watershed during autumn. We showed that water resources management and snowmelt are causing the persistent dependence of streamflows on the previous winter NAO. We found that strongly positive streamflow anomalies occurred during winter, especially in the Atlantic watershed, and provide evidence of non-stationarity and spatial variability in the NAO influence on Iberian water resources.


Sign in / Sign up

Export Citation Format

Share Document