scholarly journals Importance of the informative content in the study area when regionalising rainfall-runoff model parameters: the role of nested catchments and gauging station density

2020 ◽  
Vol 24 (11) ◽  
pp. 5149-5171
Author(s):  
Mattia Neri ◽  
Juraj Parajka ◽  
Elena Toth

Abstract. The setup of a rainfall-runoff model in a river section where no streamflow measurements are available for its calibration is one of the key research activities for the Prediction in Ungauged Basins (PUB): in order to do so it is possible to estimate the model parameters based on the hydrometric information available in the region. The informative content of the dataset (i.e. which and how many gauged river stations are available) plays an essential role in the assessment of the best regionalisation method. This study analyses how the performances of regionalisation approaches are influenced by the “information richness” of the available regional dataset, i.e. the availability of potential donors, and in particular by the gauging density and by the presence of nested donor catchments, which are expected to be hydrologically very similar to the target section. The research is carried out over a densely gauged dataset covering the Austrian country, applying two rainfall-runoff models and different regionalisation approaches. The regionalisation techniques are first implemented using all the gauged basins in the dataset as potential donors and then re-applied, decreasing the informative content of the dataset. The effect of excluding nested basins and the status of “nestedness” is identified based on the position of the closing section along the river or the percentage of shared drainage area. Moreover, the impact of reducing station density on regionalisation performance is analysed. The results show that the predictive accuracy of parameter regionalisation techniques strongly depends on the informative content of the dataset of available donor catchments. The “output-averaging” approaches, which exploit the information of more than one donor basin and preserve the correlation structure of the parameter, seem to be preferable for regionalisation purposes in both data-poor and data-rich regions. Moreover, with the use of an optimised set of catchment descriptors as a similarity measure, rather than the simple geographical distance, results are more robust to the deterioration of the informative content of the set of donors.

2020 ◽  
Author(s):  
Mattia Neri ◽  
Juraj Parajka ◽  
Elena Toth

Abstract. The set up of a rainfall-runoff model in a river section where no streamflow measurements are available for its calibration is one of the key research activity for the Prediction in Ungauged Basins (PUB): in order to do so it is possible to regionalise the model parameters based on the information available in gauged sections in the study region. The information content in the data set of gauged river stations plays an essential role in the assessment of the best regionalisation method: this study analyses how the performances of different model regionalisation approaches are influenced by the information richness of the available regional data set, and in particular by its gauging density and by the presence of nested catchments, that are expected to be hydrologically very similar. The research is carried out over a densely gauged dataset covering the Austrian country, applying two different rainfall-runoff models: a semi-distributed version of the HBV model (TUW model), and the Cemaneige-GR6J model. The regionalisation approaches include both methods which transfer the entire set of model parameters from donor catchments, thus maintaining correlation among parameters (output averaging techniques), and methods which derive each target parameter independently, as a function of the calibrated donors’ ones (parameter averaging techniques). The regionalisation techniques are first implemented using all the basins in the dataset as potential donors, showing that the output-averaging methods outperform the parameter-averaging kriging method, highlighting the importance of maintaining the correlation between the parameter values. The regionalisation is then repeated decreasing the information content of the data set, by excluding the nested basins, identified taking into account either the position of the closing section along the river or the percentage of shared drainage area. The parameter-averaging kriging is the method that is less impacted by the exclusion of the nested donors, whereas the methods transferring the entire parameter set from only one donor suffer the highest deterioration, since the single most similar or closest donor is often a nested one. On the other hand, the output-averaging methods degrade more gracefully, showing that exploiting the information resulting from more than one donor increases the robustness of the approach also in regions that do not have so many nested catchments as the Austrian one. Finally, the deterioration resulting from decreasing the station density on the regionalisation was analysed, showing that the output averaging methods using as similarity measure a set of catchment descriptors, rather than the geographical distance, are more capable to adapt to less dense datasets. The study confirms how the predictive accuracy of parameter regionalisation techniques strongly depends on the information content of the dataset of available donor catchments and indicates that the output-averaging approaches, using more than one donor basin but preserving the correlation structure of the parameter set, seem to be preferable for regionalisation purposes in both data-poor and data-rich regions.


2021 ◽  
Author(s):  
Harry R. Manson

The impact of uncertainty in spatial and a-spatial lumped model parameters for a continuous rainfall-runoff model is evaluated with respect to model prediction. The model uses a modified SCS-Curve Number approach that is loosely coupled with a geographic information system (GIS). The rainfall-runoff model uses daily average inputs and is calibrated using a daily average streamflow record for the study site. A Monte Carlo analysis is used to identify total model uncertainty while sensitivity analysis is applied using both a one-at-a-time (OAT) approach as well as through application of the extended Fourier Amplitude Sensitivity Technique (FAST). Conclusions suggest that the model is highly followed by model inputs and finally the Curve Number. While the model does not indicate a high degree of sensitivity to the Curve Number at present conditions, uncertainties in Curve Number estimation can potentially be the cause of high predictive errors when future development scenarios are evaluated.


2021 ◽  
Author(s):  
Harry R. Manson

The impact of uncertainty in spatial and a-spatial lumped model parameters for a continuous rainfall-runoff model is evaluated with respect to model prediction. The model uses a modified SCS-Curve Number approach that is loosely coupled with a geographic information system (GIS). The rainfall-runoff model uses daily average inputs and is calibrated using a daily average streamflow record for the study site. A Monte Carlo analysis is used to identify total model uncertainty while sensitivity analysis is applied using both a one-at-a-time (OAT) approach as well as through application of the extended Fourier Amplitude Sensitivity Technique (FAST). Conclusions suggest that the model is highly followed by model inputs and finally the Curve Number. While the model does not indicate a high degree of sensitivity to the Curve Number at present conditions, uncertainties in Curve Number estimation can potentially be the cause of high predictive errors when future development scenarios are evaluated.


2013 ◽  
Vol 17 (11) ◽  
pp. 4415-4427 ◽  
Author(s):  
A. E. Sikorska ◽  
A. Scheidegger ◽  
K. Banasik ◽  
J. Rieckermann

Abstract. Streamflow cannot be measured directly and is typically derived with a rating curve model. Unfortunately, this causes uncertainties in the streamflow data and also influences the calibration of rainfall-runoff models if they are conditioned on such data. However, it is currently unknown to what extent these uncertainties propagate to rainfall-runoff predictions. This study therefore presents a quantitative approach to rigorously consider the impact of the rating curve on the prediction uncertainty of water levels. The uncertainty analysis is performed within a formal Bayesian framework and the contributions of rating curve versus rainfall-runoff model parameters to the total predictive uncertainty are addressed. A major benefit of the approach is its independence from the applied rainfall-runoff model and rating curve. In addition, it only requires already existing hydrometric data. The approach was successfully demonstrated on a small catchment in Poland, where a dedicated monitoring campaign was performed in 2011. The results of our case study indicate that the uncertainty in calibration data derived by the rating curve method may be of the same relevance as rainfall-runoff model parameters themselves. A conceptual limitation of the approach presented is that it is limited to water level predictions. Nevertheless, regarding flood level predictions, the Bayesian framework seems very promising because it (i) enables the modeler to incorporate informal knowledge from easily accessible information and (ii) better assesses the individual error contributions. Especially the latter is important to improve the predictive capability of hydrological models.


2021 ◽  
Author(s):  
Milica Aleksić ◽  
Patrik Sleziak ◽  
Kamila Hlavčová

AbstractA conceptual rainfall-runoff model was used for estimating the impact of climate change on the runoff regime in the Myjava River basin. Changes in climatic characteristics for future decades were expressed by a regional climate model using the A1B emission scenario. The model was calibrated for 1981–1990, 1991–2000, 2001–2010, 2011–2019. The best set of model parameters selected from the recent calibration period was used to simulate runoff for three periods, which should reflect the level of future climate change. The results show that the runoff should increase in the winter months (December and January) and decrease in the summer months (June to August). An evaluation of the long-term mean monthly runoff for the future climate scenario indicates that the highest runoff will occur in March.


2013 ◽  
Vol 10 (3) ◽  
pp. 2955-2986 ◽  
Author(s):  
A. E. Sikorska ◽  
A. Scheidegger ◽  
K. Banasik ◽  
J. Rieckermann

Abstract. Streamflow cannot be measured directly and is typically derived with a rating curve model. Unfortunately, this causes uncertainties in the streamflow data and also influences the calibration of rainfall-runoff models if they are conditioned on such data. However, it is currently unknown to what extent these uncertainties propagate to rainfall-runoff predictions. This study therefore presents a quantitative approach to rigorously consider the impact of the rating curve on the prediction uncertainty of water levels. The uncertainty analysis is performed within a formal Bayesian framework and the contributions of rating curve versus rainfall-runoff model parameters to the total predictive uncertainty are addressed. A major benefit of the approach is its independence from the applied rainfall-runoff model and rating curve. In addition, it only requires already existing hydrometric data. The approach was successfully tested on a small urbanized basin in Poland, where a dedicated monitoring campaign was performed in 2011. The results of our case study indicate that the uncertainty in calibration data derived by the rating curve method may be of the same relevance as rainfall-runoff model parameters themselves. A conceptual limitation of the approach presented is that it is limited to water level predictions. Nevertheless, regarding flood level predictions, the Bayesian framework seems very promising because it (i) enables the modeler to incorporate informal knowledge from easily accessible information and (ii) better assesses the individual error contributions. Especially the latter is important to improve the predictive capability of hydrological models.


2009 ◽  
Vol 40 (5) ◽  
pp. 433-444 ◽  
Author(s):  
David A. Post

A methodology has been derived which allows an estimate to be made of the daily streamflow at any point within the Burdekin catchment in the dry tropics of Australia. The input data requirements are daily rainfall (to drive the rainfall–runoff model) and mean average wet season rainfall, total length of streams, percent cropping and percent forest in the catchment (to regionalize the parameters of the rainfall–runoff model). The method is based on the use of a simple, lumped parameter rainfall–runoff model, IHACRES (Identification of unit Hydrographs And Component flows from Rainfall, Evaporation and Streamflow data). Of the five parameters in the model, three have been set to constants to reflect regional conditions while the other two have been related to physio-climatic attributes of the catchment under consideration. The parameter defining total catchment water yield (c) has been estimated based on the mean average wet season rainfall, while the streamflow recession time constant (τ) has been estimated based on the total length of streams, percent cropping and percent forest in the catchment. These relationships have been shown to be applicable over a range of scales from 68–130,146 km2. However, three separate relationships were required to define c in the three major physiographic regions of the Burdekin: the upper Burdekin, Bowen and Suttor/lower Burdekin. The invariance of the relationships with scale indicates that the dominant processes may be similar across a range of scales. The fact that different relationships were required for each of the three major regions indicates the geographic limitations of this regionalization approach. For most of the 24 gauged catchments within the Burdekin the regionalized rainfall–runoff models were nearly as good as or better than the rainfall–runoff models calibrated to the observed streamflow. In addition, models often performed better over the simulation period than the calibration period. This indicates that future improvements in regionalization should focus on improving the quality of input data and rainfall–runoff model conceptualization rather than on the regionalization procedure per se.


2009 ◽  
Vol 60 (3) ◽  
pp. 717-725 ◽  
Author(s):  
C. B. S. Dotto ◽  
A. Deletic ◽  
T. D. Fletcher

Uncertainty is intrinsic to all monitoring programs and all models. It cannot realistically be eliminated, but it is necessary to understand the sources of uncertainty, and their consequences on models and decisions. The aim of this paper is to evaluate uncertainty in a flow and water quality stormwater model, due to the model parameters and the availability of data for calibration and validation of the flow model. The MUSIC model, widely used in Australian stormwater practice, has been investigated. Frequentist and Bayesian methods were used for calibration and sensitivity analysis, respectively. It was found that out of 13 calibration parameters of the rainfall/runoff model, only two matter (the model results were not sensitive to the other 11). This suggests that the model can be simplified without losing its accuracy. The evaluation of the water quality models proved to be much more difficult. For the specific catchment and model tested, we argue that for rainfall/runoff, 6 months of data for calibration and 6 months of data for validation are required to produce reliable predictions. Further work is needed to make similar recommendations for modelling water quality.


Soil Research ◽  
1982 ◽  
Vol 20 (1) ◽  
pp. 15
Author(s):  
WC Boughton ◽  
FT Sefe

The rainfall input to a rainfall-runoff model was arbitrarily increased and decreased in order to determine the magnitude of corresponding changes in optimized values of the model parameters. The optimized capacities of moisture stores representing surface storage capacity of a catchment changed by average amounts of +24% and -20% as rainfall input was changed by +10% and -10%, respectively. Values of other parameters showed changes of similar magnitude, but there was no uniformity in the magnitude of induced changes from catchment to catchment. The results cast doubt on the validity of relating optimized values of model parameters to physical characteristics of catchments.


Sign in / Sign up

Export Citation Format

Share Document