scholarly journals Characterizing uncertainty in the hydraulic parameters of oil sands mine reclamation covers and its influence on water balance predictions

2020 ◽  
Vol 24 (2) ◽  
pp. 735-759 ◽  
Author(s):  
M. Shahabul Alam ◽  
S. Lee Barbour ◽  
Mingbin Huang

Abstract. One technique to evaluate the performance of oil sands reclamation covers is through the simulation of long-term water balance using calibrated soil–vegetation–atmosphere transfer models. Conventional practice has been to derive a single set of optimized hydraulic parameters through inverse modelling (IM) based on short-term (<5–10 years) monitoring datasets. This approach is unable to characterize the impact of variability in the cover properties. This study utilizes IM to optimize the hydraulic properties for 12 soil cover designs, replicated in triplicate, at Syncrude's Aurora North mine site. The hydraulic parameters for three soil types (peat cover soil, coarse-textured subsoil, and lean oil sand substrate) were optimized at each monitoring site from 2013 to 2016. The resulting 155 optimized parameter values were used to define distributions for each parameter/soil type, while the progressive Latin hypercube sampling (PLHS) method was used to sample parameter values randomly from the optimized parameter distributions. Water balance models with the sampled parameter sets were used to evaluate variations in the maximum sustainable leaf area index (LAI) for five illustrative covers and quantify uncertainty associated with long-term water balance components and LAI values. Overall, the PLHS method was able to better capture broader variability in the water balance components than a discrete interval sampling method. The results also highlight that climate variability dominates the simulated variability in actual evapotranspiration and that climate and parameter uncertainty have a similar influence on the variability in net percolation.

2016 ◽  
Vol 20 (7) ◽  
pp. 2877-2898 ◽  
Author(s):  
Hannes Müller Schmied ◽  
Linda Adam ◽  
Stephanie Eisner ◽  
Gabriel Fink ◽  
Martina Flörke ◽  
...  

Abstract. When assessing global water resources with hydrological models, it is essential to know about methodological uncertainties. The values of simulated water balance components may vary due to different spatial and temporal aggregations, reference periods, and applied climate forcings, as well as due to the consideration of human water use, or the lack thereof. We analyzed these variations over the period 1901–2010 by forcing the global hydrological model WaterGAP 2.2 (ISIMIP2a) with five state-of-the-art climate data sets, including a homogenized version of the concatenated WFD/WFDEI data set. Absolute values and temporal variations of global water balance components are strongly affected by the uncertainty in the climate forcing, and no temporal trends of the global water balance components are detected for the four homogeneous climate forcings considered (except for human water abstractions). The calibration of WaterGAP against observed long-term average river discharge Q significantly reduces the impact of climate forcing uncertainty on estimated Q and renewable water resources. For the homogeneous forcings, Q of the calibrated and non-calibrated regions of the globe varies by 1.6 and 18.5 %, respectively, for 1971–2000. On the continental scale, most differences for long-term average precipitation P and Q estimates occur in Africa and, due to snow undercatch of rain gauges, also in the data-rich continents Europe and North America. Variations of Q at the grid-cell scale are large, except in a few grid cells upstream and downstream of calibration stations, with an average variation of 37 and 74 % among the four homogeneous forcings in calibrated and non-calibrated regions, respectively. Considering only the forcings GSWP3 and WFDEI_hom, i.e., excluding the forcing without undercatch correction (PGFv2.1) and the one with a much lower shortwave downward radiation SWD than the others (WFD), Q variations are reduced to 16 and 31 % in calibrated and non-calibrated regions, respectively. These simulation results support the need for extended Q measurements and data sharing for better constraining global water balance assessments. Over the 20th century, the human footprint on natural water resources has become larger. For 11–18% of the global land area, the change of Q between 1941–1970 and 1971–2000 was driven more strongly by change of human water use including dam construction than by change in precipitation, while this was true for only 9–13 % of the land area from 1911–1940 to 1941–1970.


2019 ◽  
Author(s):  
Md. Shahabul Alam ◽  
S. Lee Barbour ◽  
Mingbin Huang

Abstract. One technique to evaluate the performance of oil sands reclamation covers is through the simulation of long-term water balance using calibrated soil–vegetation–atmosphere–transfer models. Conventional practice has been to derive a single set of optimized hydraulic parameters through inverse modelling (IM) based on short-term (


2009 ◽  
Vol 55 (No. 2) ◽  
pp. 51-62 ◽  
Author(s):  
P. Kantor ◽  
F. Šach ◽  
V. Černohous

The investigation of foliage biomass development including LAI and the growth of spruce and beech stands in the juvenile stage (age 1 to 21 years) represents a special complementary study to long-term research of water balance components on the experimental forest hydrology area Deštné Mountainside. The experiment is located in the Orlické hory Mts. at the altitude of 900 m on a clear-felled area. In 1982 the spruce plantation was established at 1.5 ´ 1.5 m spacing (4,600 plants/ha) and the beech plantation at 1.0 ´ 1.0 m (10,000 plants/ha). According to tending programs applicable to forest stands in the Czech Republic, two improvement fellings were carried out (1995 and 2001) in spruce and none in beech. In 2002, some 1,550 spruce trees/ha (mean height 10.1 m) and 7,440 beech trees/ha (mean height 4.8 m) were recorded. At the end of the first vegetation season in 1982, the dry matter (DM) of foliage in spruce and beech amounted to 35 and 70 kg/ha, respectively. Five years later (1987), these values increased to 770 and 360 kg/ha in spruce and beech, respectively. At a stand age of 21 years, foliage DM was determined to be 11,940 kg/ha for spruce and 3,050 kg/ha for beech. At the same time, the leaf-area index (LAI) was calculated to be 5.55 and 5.94 in spruce and beech, respectively. The method of foliage biomass quantification, based on the determination of foliage DM of mean sample trees and stand density, enabled to acquire complementary data usable in long-term research of the water regime of spruce and beech and simultaneously to provide information on the potential of biomass production and LAI value of both main commercial species in mountain forests of the Czech Republic.


2018 ◽  
Vol 19 (11) ◽  
pp. 1731-1752 ◽  
Author(s):  
Md. Shahabul Alam ◽  
S. Lee Barbour ◽  
Amin Elshorbagy ◽  
Mingbin Huang

Abstract The design of reclamation soil covers at oil sands mines in northern Alberta, Canada, has been conventionally based on the calibration of soil–vegetation–atmosphere transfer (SVAT) models against field monitoring observations collected over several years, followed by simulations of long-term performance using historical climate data. This paper evaluates the long-term water balances for reclamation covers on two oil sands landforms and three natural coarse-textured forest soil profiles using both historical climate data and future climate projections. Twenty-first century daily precipitation and temperature data from CanESM2 were downscaled based on three representative concentration pathways (RCPs) employing a stochastic weather generator [Long Ashton Research Station Weather Generator (LARS-WG)]. Relative humidity, wind speed, and net radiation were downscaled using the delta change method. Downscaled precipitation and estimated potential evapotranspiration were used as inputs to simulate soil water dynamics using physically based models. Probability distributions of growing season (April–October) actual evapotranspiration (AET) and net percolation (NP) for the baseline and future periods show that AET and NP at all sites are expected to increase throughout the twenty-first century regardless of RCP, time period, and soil profile. Greater increases in AET and NP are projected toward the end of the twenty-first century. The increases in future NP at the two reclamation covers are larger (as a percentage increase) than at most of the natural sites. Increases in NP will result in greater water yield to surface water and may accelerate the rate at which chemical constituents contained within mine waste are released to downstream receptors, suggesting these potential changes need to be considered in mine closure designs.


2020 ◽  
Vol 12 (2) ◽  
pp. 1025-1035 ◽  
Author(s):  
Pierre-Antoine Versini ◽  
Filip Stanic ◽  
Auguste Gires ◽  
Daniel Schertzer ◽  
Ioulia Tchiguirinskaia

Abstract. The Blue Green Wave of Champs-sur-Marne (France) represents the largest green roof (1 ha) of the greater Paris area. The Hydrology, Meteorology and Complexity lab of École des Ponts ParisTech has chosen to convert this architectural building into a full-scale monitoring site devoted to studying the performance of green infrastructures in storm-water management. For this purpose, the relevant components of the water balance during a rainfall event have been monitored: rainfall, water content in the substrate, and the discharge flowing out of the infrastructure. Data provided by adapted measurement sensors were collected during 78 d between February and May 2018. The related raw data and a Python program transforming them into hydrological quantities and providing some preliminary elements of analysis have been made available. These measurements are useful to better understand the hydrological processes (infiltration and retention) conducting green roof performance and their spatial variability due to substrate heterogeneity. The data set is available here: https://doi.org/10.5281/zenodo.3687775 (Versini et al., 2019b).


2011 ◽  
Vol 52 (No. 6) ◽  
pp. 239-244 ◽  
Author(s):  
P. Kovář

The paper is focused on the impact of land use changes on water regime. First, an emphasis was given to what extent the main components of the water balance on the experimental catchment V&scaron;eminka (region Vset&iacute;nsk&eacute; Hills) were influenced. For this reason, the WBCM-5 model was implemented for the period of 10 years in a daily step with a particular reference to simulate the components of direct runoff and of subsurface water recharge. In the selected years of the period 1990&ndash;2000, the major changes were made in land use and also the significant fluctuation of rainfall-runoff regimes were observed (e.g. dry year 1992 and flood year 1997). After WBCM-5 parameter calibration it was found that some water balance components can change in relation to substantial land use changes even up to tens of percent in a balance-consideration, i.e. in daily, monthly and yearly or decade values, namely the components of interception and also of direct runoff and of subsurface water recharge. However, a different situation appears when investigating significant short-term rainfall-runoff processes. There were about seven real flood events analysed using the model KINFIL-2 (time step 0.5 hr) during the same period of about 10 years on the same catchment. Furthermore, some land use change positive or negative scenarios were also analysed there. As opposed to long-term water balance analyses, there was never achieved any greater differences in the hydrograph peak or volume than 10%. Summarising, it is always important to distinguish a possible land use change impact in either long-term balance or short-term runoff consideration, otherwise a misunderstanding might be easily made, as can often be found when commenting on the impact on floods in some mass media.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2333 ◽  
Author(s):  
Dario Ruggiu ◽  
Francesco Viola

The prediction of long term water balance components is not a trivial issue, even when empirical Budyko’s type approaches are used, because parameter estimation is often hampered by missing or poor hydrological data. In order to overcome this issue, we provided regression equations that link climate, morphological, and vegetation parameters to Fu’s parameter. Climate is here defined as a specific seasonal pattern of potential evapotranspiration and rain: five climatic scenarios have been considered to mimic different conditions worldwide. A weather generator has been used to create stochastic time series for the related climatic scenario, which in turn has been used as an input to a conceptual hydrological model to obtain long-term water balance components with low computational effort, while preserving fundamental process descriptions. The morphology and vegetation’s role in determining water partitioning process has been epitomized in four parameters of the conceptual model. Numerical simulations explored a large set of basins in the five climates. Results show that climate superimposes partitioning rules for a given basin; morphological and vegetation watershed properties, as conceptualized by model parameters, determine the Fu’s parameter within a given climate. A sensitive analysis confirmed that vegetation has the most influencing role in determining water partitioning rules, followed by soil permeability. Finally, linear regressions relating basin characteristics to Fu’s parameter have been obtained in the five climates and tested in a basin for each case, obtaining encouraging results. The small amount of data required and the very low computational effort of the method make this approach ideal for practitioners and hydrologists involved in annual runoff assessment.


Water ◽  
2016 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Winai Wangpimool ◽  
Kobkiat Pongput ◽  
Nipon Tangtham ◽  
Saowanee Prachansri ◽  
Philip Gassman

2008 ◽  
Vol 22 (3) ◽  
pp. 448-452 ◽  
Author(s):  
Randall S. Currie ◽  
Norman L. Klocke

In 2005 a hailstorm struck a long-term dose–response study of irrigation requirements and corn plant populations. This misfortune occurred again in 2006 at approximately the same growth stage. Therefore, the objectives of the studies were redirected to measure the impact of actual hail events on corn leaf area index (LAI) and the competitive interaction of escaped Palmer amaranth populations induced by hail across different levels of irrigation and corn populations. In 2005, the study treatment with the lowest corn population and level of irrigation had twice the Palmer amaranth biomass (PABM) at corn harvest compared with the highest corn population and irrigation level. Corn LAI produced simple linear models that predicted both corn grain yield and PABM. In 2007, the nonhail year, PABM was depressed 4- to 15-fold compared with hail years. PABM declined linearly from 417 kg/ha at the lowest level of irrigation and corn population to 48 kg/ha at the highest level of irrigation and corn plant population. Although economic return per increment of irrigation declined in both hail years, the trends in economic returns were still positive. This suggests that a producer with similar conditions should continue to irrigate even though his or her rate of economic return is reduced.


2007 ◽  
Vol 4 (6) ◽  
pp. 4265-4295 ◽  
Author(s):  
J. Dams ◽  
S. T. Woldeamlak ◽  
O. Batelaan

Abstract. Land-use change and climate change, along with groundwater pumping are frequently indicated to be the main human-induced factors influencing the groundwater system. Up till now, research has mainly been focusing on the effect of the water quality of these human-induced changes on the groundwater system, often neglecting changes in quantity. The focus in this study is on the impact of land-use changes in the near future, from 2000 until 2020, on the groundwater quantity and the general hydrologic balance of a sub-catchment of the Kleine Nete, Belgium. This study tests a new methodology which involves coupling a land-use change model with a water balance model and a groundwater model. The future land-use is modelled with the CLUE-S model. Four scenarios (A1, A2, B1 and B2) based on the Special Report on Emission Scenarios (SRES) are used for the land-use modelling. Water balance components, groundwater level and baseflow are simulated using the WetSpass model in conjunction with a MODFLOW groundwater model. Results show that the average recharge slowly decreases for all scenarios, the decreases are 2.9, 1.6, 1.8 and 0.8% for respectively scenario A1, A2, B1 and B2. The predicted reduction in recharge results in a small decrease of the average groundwater level, ranging from 2.5 cm for scenario A1 to 0.9 cm for scenario B2, and a reduction of the total baseflow with maximum 2.3% and minimum 0.7% respectively for scenario A1 and B2. Although these average values do not indicate significant changes for the groundwater system, spatial analysis of the changes shows the changes are concentrated in the neighbourhood of the major cities in the study areas. It is therefore important for spatial managers to take the groundwater system into account for reducing the negative impacts of land-use and climate change as much as possible.


Sign in / Sign up

Export Citation Format

Share Document