scholarly journals Snow water equivalents exclusively from snow depths and their temporal changes: the Δsnow model

2021 ◽  
Vol 25 (3) ◽  
pp. 1165-1187
Author(s):  
Michael Winkler ◽  
Harald Schellander ◽  
Stefanie Gruber

Abstract. Reliable historical manual measurements of snow depths are available for many years, sometimes decades, across the globe, and increasingly snow depth data are also available from automatic stations and remote sensing platforms. In contrast, records of snow water equivalent (SWE) are sparse, which is significant as SWE is commonly the most important snowpack feature for hydrology, climatology, agriculture, natural hazards, and other fields. Existing methods of modeling SWE either rely on detailed meteorological forcing being available or are not intended to simulate individual SWE values, such as seasonal “peak SWE”. Here we present a new semiempirical multilayer model, Δsnow, for simulating SWE and bulk snow density solely from a regular time series of snow depths. The model, which is freely available as an R package, treats snow compaction following the rules of Newtonian viscosity, considers errors in measured snow depth, and treats overburden loads due to new snow as additional unsteady compaction; if snow is melted, the water mass is stepwise distributed from top to bottom in the snowpack. Seven model parameters are subject to calibration. Snow observations of 67 winters from 14 stations, well-distributed over different altitudes and climatic regions of the Alps, are used to find an optimal parameter setting. Data from another 71 independent winters from 15 stations are used for validation. Results are very promising: median bias and root mean square error for SWE are only −3.0 and 30.8 kg m−2, and +0.3 and 36.3 kg m−2 for peak SWE, respectively. This is a major advance compared to snow models relying on empirical regressions, and even sophisticated thermodynamic snow models do not necessarily perform better. As such, the new model offers a means to derive robust SWE estimates from historical snow depth data and, with some modification, to generate distributed SWE from remotely sensed estimates of spatial snow depth distribution.

2020 ◽  
Author(s):  
Michael Winkler ◽  
Harald Schellander ◽  
Stefanie Gruber

Abstract. Snow heights have been manually observed for many years, sometimes decades, at various places. These records are often of good quality. In addition, more and more data from automatic stations and remote sensing are available. On the other hand, records of snow water equivalent SWE – synonymous for snow load or mass – are sparse, although it might be the most important snowpack feature in fields like hydrology, climatology, agriculture, natural hazards research, etc. SWE very often has to be modeled, and those models either depend on meteorological forcing or are not intended to simulate individual SWE values, like the substantial seasonal peak SWE. The ΔSNOW.MODEL is presented as a new method to simulate local-scale SWE. It solely needs snow heights as input, though a gapless record thereof. Temporal resolution of the data series is no restriction per se. The ΔSNOW.MODEL is a semi-empirical multi-layer model and freely available as R-package. Snow compaction is modeled following the rules of Newtonian viscosity. The model considers measurement errors, treats overburden loads due to fresh snow as additional unsteady compaction, and melted mass is stepwise distributed top-down in the snowpack. Seven model parameters are subject to calibration, which was performed using 71 winters from 14 stations, well-distributed over different altitudes and climatic regions of the Alps. Another 73 rather independent winters act as validation data. Results are very promising: Median bias and root mean squared error for SWE are only −4.0 kg m−2 and 23.9 kg m−2, and +2.3 kg m−2 and 23.1 kg m−2 for peak SWE, respectively. This is a major advance compared to snow models relying on empirical regressions, but also much more sophisticated thermodynamic snow models not necessarily perform better. Not least, this study outlines the need for comprehensive comparison studies on SWE measurement and modeling at the point and local scale.


2010 ◽  
Vol 11 (6) ◽  
pp. 1380-1394 ◽  
Author(s):  
Matthew Sturm ◽  
Brian Taras ◽  
Glen E. Liston ◽  
Chris Derksen ◽  
Tobias Jonas ◽  
...  

Abstract In many practical applications snow depth is known, but snow water equivalent (SWE) is needed as well. Measuring SWE takes ∼20 times as long as measuring depth, which in part is why depth measurements outnumber SWE measurements worldwide. Here a method of estimating snow bulk density is presented and then used to convert snow depth to SWE. The method is grounded in the fact that depth varies over a range that is many times greater than that of bulk density. Consequently, estimates derived from measured depths and modeled densities generally fall close to measured values of SWE. Knowledge of snow climate classes is used to improve the accuracy of the estimation procedure. A statistical model based on a Bayesian analysis of a set of 25 688 depth–density–SWE data collected in the United States, Canada, and Switzerland takes snow depth, day of the year, and the climate class of snow at a selected location from which it produces a local bulk density estimate. When converted to SWE and tested against two continental-scale datasets, 90% of the computed SWE values fell within ±8 cm of the measured values, with most estimates falling much closer.


2017 ◽  
Author(s):  
Antonella Senese ◽  
Maurizio Maugeri ◽  
Eraldo Meraldi ◽  
Giampietro Verza ◽  
Roberto Sergio Azzoni ◽  
...  

Abstract. We present and compare 11 years of snow data (snowfall, snow depth and snow water equivalent (SWE)) measured by an Automatic Weather Station and by some field campaigns on the Forni Glacier. The data have been acquired by means of (i) a Campbell SR50 sonic ranger from October 2005 (snow depth data), (ii) manual snow pits from January 2006 (snow depth and SWE data), (iii) a Sommer USH8 sonic ranger from May 2014 (snow depth data), (iv) a Park Mechanical SS-6048 snow pillow from May 2014 (SWE data), (v) a manual snow weighting tube (Enel-Valtecne©) from May 2014 (snow depth and SWE data). The aim of the analyses is to assess the mean value of fresh snow density and the most appropriate method to evaluate SWE for this measuring site. The results indicate that the daily SR50 sonic ranger measures allow a rather good estimation of the SWE, and the provided snow pit data are available for defining the site mean value of fresh snow density. For the Forni Glacier measuring site, this value turned out to be 140 kg m−3. The SWE derived from sonic ranger data is rather sensitive to this value: a change in fresh snow density of 20 kg m−3 causes a mean variation in SWE of ±0.093 m w.e. for each hydrological year, ranging from ±0.050 m w.e. to ±0.115 m w.e.


2017 ◽  
Vol 11 (4) ◽  
pp. 1647-1664 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of) SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF). Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.


Author(s):  
S. R. Fassnacht ◽  
M. Hultstrand

Abstract. The individual measurements from snowcourse stations were digitized for six stations across northern Colorado that had up to 79 years of record (1936 to 2014). These manual measurements are collected at the first of the month from February through May, with additional measurements in January and June. This dataset was used to evaluate the variability in snow depth and snow water equivalent (SWE) across a snowcourse, as well as trends in snowpack patterns across the entire period of record and over two halves of the record (up to 1975 and from 1976). Snowpack variability is correlated to depth and SWE. The snow depth variability is shown to be highly correlated with average April snow depth and day of year. Depth and SWE were found to be significantly decreasing over the entire period of record at two stations, while at another station the significant trends were an increase over the first half of the record and a decrease over the second half. Variability tended to decrease with time, when significant.


2010 ◽  
Vol 7 (3) ◽  
pp. 3481-3519 ◽  
Author(s):  
M. Shrestha ◽  
L. Wang ◽  
T. Koike ◽  
Y. Xue ◽  
Y. Hirabayashi

Abstract. The snow physics of a distributed biosphere hydrological model, referred to as the Water and Energy Budget based Distributed Hydrological Model (WEB-DHM) is improved by incorporating the three-layer physically based energy balance snowmelt model of Simplified Simple Biosphere 3 (SSiB3) and the Biosphere-Atmosphere Transfer Scheme (BATS) albedo scheme. WEB-DHM with improved snow physics (WEB-DHM-S) can simulate the variability of snow density, snow depth and snow water equivalent, liquid water and ice content in each layer, prognostic snow albedo, diurnal variation in snow surface temperature, thermal heat due to conduction and liquid water retention. The performance of WEB-DHM-S is evaluated at two alpine sites of the Snow Model Intercomparison Project with different climate characteristics: Col de Porte in France and Weissfluhjoch in Switzerland. The simulation results of the snow depth, snow water equivalent, surface temperature, snow albedo and snowmelt runoff reveal that WEB-DHM-S is capable of simulating the internal snow process better than the original WEB-DHM, with the root mean square error and bias error being remarkably reduced. Although WEB-DHM-S is only evaluated at a point scale for the simulation of snow processes, this study provides a benchmark for the application of WEB-DHM-S in cold regions in the assessment of the basin-scale snow water equivalent and seasonal discharge simulation for water resources management.


2019 ◽  
Author(s):  
Edward H. Bair ◽  
Karl Rittger ◽  
Jawairia A. Ahmad ◽  
Doug Chabot

Abstract. Ice and snowmelt feed the Indus and Amu Darya rivers, yet there are limited in situ measurements of these resources. Previous work in the region has shown promise using snow water equivalent (SWE) reconstruction, which requires no in situ measurements, but validation has been a problem until recently when we were provided with daily manual snow depth measurements from Afghanistan, Tajikistan, and Pakistan by the Aga Khan Agency for Habitat (AKAH). For each station, accumulated precipitation and SWE were derived from snow depth using the SNOWPACK model. High-resolution (500 m) reconstructed SWE estimates from the ParBal model were then compared to the modeled SWE at the stations. The Alpine3D model was then used to create spatial estimates at 25 km to compare with estimates from other snow models. Additionally, the coupled SNOWPACK and Alpine3D system has the advantage of simulating snow profiles, which provide stability information. Following previous work, the median number of critical layers and percentage of facets across all of the pixels containing the AKAH stations was computed. For SWE at the point scale, the reconstructed estimates showed a bias of −42 mm (−19 %) at the peak. For the coarser spatial SWE estimates, the various models showed a wide range, with reconstruction being on the lower end. For stratigraphy, a heavily faceted snowpack is observed in both years, but 2018, a dry year, according to most of the models, showed more critical layers that persisted for a longer period.


2021 ◽  
Vol 11 (18) ◽  
pp. 8365
Author(s):  
Liming Gao ◽  
Lele Zhang ◽  
Yongping Shen ◽  
Yaonan Zhang ◽  
Minghao Ai ◽  
...  

Accurate simulation of snow cover process is of great significance to the study of climate change and the water cycle. In our study, the China Meteorological Forcing Dataset (CMFD) and ERA-Interim were used as driving data to simulate the dynamic changes in snow depth and snow water equivalent (SWE) in the Irtysh River Basin from 2000 to 2018 using the Noah-MP land surface model, and the simulation results were compared with the gridded dataset of snow depth at Chinese meteorological stations (GDSD), the long-term series of daily snow depth dataset in China (LSD), and China’s daily snow depth and snow water equivalent products (CSS). Before the simulation, we compared the combinations of four parameterizations schemes of Noah-MP model at the Kuwei site. The results show that the rainfall and snowfall (SNF) scheme mainly affects the snow accumulation process, while the surface layer drag coefficient (SFC), snow/soil temperature time (STC), and snow surface albedo (ALB) schemes mainly affect the melting process. The effect of STC on the simulation results was much higher than the other three schemes; when STC uses a fully implicit scheme, the error of simulated snow depth and snow water equivalent is much greater than that of a semi-implicit scheme. At the basin scale, the accuracy of snow depth modeled by using CMFD and ERA-Interim is higher than LSD and CSS snow depth based on microwave remote sensing. In years with high snow cover, LSD and CSS snow depth data are seriously underestimated. According to the results of model simulation, it is concluded that the snow depth and snow water equivalent in the north of the basin are higher than those in the south. The average snow depth, snow water equivalent, snow days, and the start time of snow accumulation (STSA) in the basin did not change significantly during the study period, but the end time of snow melting was significantly advanced.


2012 ◽  
Vol 4 (1) ◽  
pp. 13-21 ◽  
Author(s):  
S. Morin ◽  
Y. Lejeune ◽  
B. Lesaffre ◽  
J.-M. Panel ◽  
D. Poncet ◽  
...  

Abstract. A quality-controlled snow and meteorological dataset spanning the period 1 August 1993–31 July 2011 is presented, originating from the experimental station Col de Porte (1325 m altitude, Chartreuse range, France). Emphasis is placed on meteorological data relevant to the observation and modelling of the seasonal snowpack. In-situ driving data, at the hourly resolution, consist of measurements of air temperature, relative humidity, windspeed, incoming short-wave and long-wave radiation, precipitation rate partitioned between snow- and rainfall, with a focus on the snow-dominated season. Meteorological data for the three summer months (generally from 10 June to 20 September), when the continuity of the field record is not warranted, are taken from a local meteorological reanalysis (SAFRAN), in order to provide a continuous and consistent gap-free record. Data relevant to snowpack properties are provided at the daily (snow depth, snow water equivalent, runoff and albedo) and hourly (snow depth, albedo, runoff, surface temperature, soil temperature) time resolution. Internal snowpack information is provided from weekly manual snowpit observations (mostly consisting in penetration resistance, snow type, snow temperature and density profiles) and from a hourly record of temperature and height of vertically free ''settling'' disks. This dataset has been partially used in the past to assist in developing snowpack models and is presented here comprehensively for the purpose of multi-year model performance assessment. The data is placed on the PANGAEA repository (http://dx.doi.org/10.1594/PANGAEA.774249) as well as on the public ftp server ftp://ftp-cnrm.meteo.fr/pub-cencdp/.


Sign in / Sign up

Export Citation Format

Share Document