scholarly journals Studies of acid deposition and its effects in two small catchments in Hunan, China

2003 ◽  
Vol 7 (3) ◽  
pp. 399-410 ◽  
Author(s):  
N. Xue ◽  
H. M. Seip ◽  
B. Liao ◽  
R. D. Vogt

Abstract. Acid deposition and its effects were studied by analysing the chemistry in precipitation, stream water, soil water and soils in two catchments in Hunan. One site, Linkesuo (denoted LKS), is on the outskirts of Changsha, the provincial capital of Hunan, the other (Bailutang, denoted BLT) on the outskirts of Chenzhou in southern Hunan. Volume-weighted average pH values and sulphate concentrations in wet deposition were 4.58 (BLT) and 4.90 (LKS) and 174 μmolc L-1 and 152 μmolc L-1, respectively. Wet deposition of sulphate has been estimated as 4.3 gS m-2yr-1 and 3.4 gS m-2yr-1 at BLT and LKS, respectively. Estimates of the corresponding total depositions (dry + wet) are 6.1 gS m-2yr-1 and 5.3 gS m-2yr-1. In precipitation and throughfall, sulphate was the major anion and calcium the major cation. In stream and soil water, nitrate was slightly higher than sulphate on an equivalent basis and magnesium (Mg) not much lower than calcium (Ca). Important soil properties, such as soil pH, soil organic matter (SOM) content, exchangeable acidic cations, exchangeable base cations, effective cation exchange capacity (CECe), base saturation (BS), and aluminium (Al) and iron (Fe) pools, were determined for five forest soil profiles (consisting of four horizons) in each of the two catchments. The soils in BLT are generally more acid, have lower BS and higher Al and Fe pools than the LKS soils. The Al- and Fe-pools were generally higher in the topsoils (i.e. the O and A horizons) than in deeper soils (i.e. E and B horizons) especially at the most acidic site (BLT). There are significant correlations between Fe-pools and the corresponding Al-pools in both catchments except between the amorphous Feox and Alox. Considering the long-term high deposition of sulphate, there is a risk of future ecological damage due to acidification, especially in the BLT catchment, although vegetation damage has yet to be observed in the catchments. This condition appears to be representative of a large part of Hunan. Keyword: acid deposition, soil acidification, catchment, Al-pools, Fe-pools, Hunan

2018 ◽  
Vol 66 (4) ◽  
pp. 421-428 ◽  
Author(s):  
Dušan Igaz ◽  
Vladimír Šimanský ◽  
Ján Horák ◽  
Elena Kondrlová ◽  
Jana Domanová ◽  
...  

Abstract During the last decade, biochar has captured the attention of agriculturalists worldwide due to its positive effect on the environment. To verify the biochar effects on organic carbon content, soil sorption, and soil physical properties under the mild climate of Central Europe, we established a field experiment. This was carried out on a silty loam Haplic Luvisol at the Malanta experimental site of the Slovak Agricultural University in Nitra with five treatments: Control (biochar 0 t ha−1, nitrogen 0 kg ha−1); B10 (biochar 10 t ha−1, nitrogen 0 kg ha−1); B20 (biochar 20 t ha−1, nitrogen 0 kg ha−1); B10+N (biochar 10 t ha−1, nitrogen 160 kg ha−1) and B20+N (biochar 20 t ha−1, nitrogen 160 kg ha−1). Applied biochar increased total and available soil water content in all fertilized treatments. Based on the results from the spring soil sampling (porosity and water retention curves), we found a statistically significant increase in the soil water content for all fertilized treatments. Furthermore, biochar (with or without N fertilization) significantly decreased hydrolytic acidity and increased total organic carbon. After biochar amendment, the soil sorption complex became fully saturated mainly by the basic cations. Statistically significant linear relationships were observed between the porosity and (A) sum of base cations, (B) cation exchange capacity, (C) base saturation.


2021 ◽  
Vol 70 (1) ◽  
pp. 13-26
Author(s):  
Miodrag Tolimir ◽  
Branka Kresović ◽  
Borivoj Pejić ◽  
Katarina Gajić ◽  
Angelina Tapanarova ◽  
...  

The impact of long-term (> 100 yr) irrigation on soil chemical properties was studied on eight plots in the Beli Drim river valley in Kosovo and Metohija near Klina, Serbia. For these studies, soil samples from shallow profiles were collected from only one or two depth zones of the Ah horizon; and from moderately deep and deep profiles, from two to three depth zones for the purpose of comparing irrigated field and non-irrigated meadow lands. Water from the Beli Drim River and surface gravity systems (irrigation furrows or border strip irrigation) were used for irrigation. Chemical variables included determination of pH-H2O, content of CaCO3, content of humus, hydrolytic acidity, sum of basic cations, cation exchange capacity, and base saturation. On irrigated soils, the results of chemical analysis showed on average a small increase in pH-H2O (0.07 pH units), as well as a significant decrease in humus content (2.00-4.75%), sum of basic cations (4.98-12.98%) and cation exchange capacity (12.8%) compared to the non-irrigated land of the study area. Long-term irrigation had no effect on hydrolytic acidity and base saturation in the Ah horizon of the investigated lands. Namely, the mentioned variations in the chemical properties of the investigated soils show that slight processes of reduction in the humus content and reduction of the content of base cations occured. Data on the chemical properties of the investigated soils indicate that the destructive processes of reduction in the humus content and leaching of base cations must be controlled in order to achieve a stable sustainable system of high productivity and prevent their further deterioration.


2020 ◽  
Author(s):  
Elin Jutebring Sterte ◽  
Fredrik Lidman ◽  
Emma Lindborg ◽  
Ylva Sjöberg ◽  
Hjalmar Laudon

Abstract. Understanding travel times of rain and snowmelt inputs transported through the subsurface environment to recipient surface waters is critical in many hydrological and biogeochemical investigations. In this study, a particle tracking model approach in Mike SHE was used to investigating the travel time of stream groundwater input to 14 partly nested, long-term monitored boreal sub-catchments. Based on previous studies in the area, we hypothesized that the main factor controlling groundwater travel times was catchment size. The modeled mean travel time (MTT) in the different sub-catchments ranged between 0.5 years and 3.6 years. Estimated MTTs were tested against the observed long-term winter isotopic signature (δ2H, δ18O) and chemistry (base cation concentration and pH) of the stream water. The underlying assumption was that older water would have an isotopic signature that resembles the long-term average precipitation input, while seasonal variations would be more apparent in catchments with younger water. Similarly, it was assumed that older water would be more affected by weathering, resulting in higher concentrations of base cations and higher pH. 10-year average winter values for stream chemistry were used for each sub-catchment. We found significant correlations between the estimated travel times and average water isotope signature (r = 0.80, p 


1995 ◽  
Vol 26 (4-5) ◽  
pp. 369-388 ◽  
Author(s):  
Espen Lydersen ◽  
Arne Henriksen

Input of neutral salt, primarily NaCl, from sea spray is an important factor for short-term acidification of surface water, primarily in already acidified areas, because Na may substitute for H+ and cationic aluminium by cation-exchange reactions in the soil. By evaluating the variation of non-marine sodium (Na*) separately it is possible to estimate the major effect of seasalt episodes on the neutralizing capacity (ANC) of stream water. At four long-term monitored Norwegian catchments, the Na* in stream water on average explained 28 ± 4% of the monthly variations of ANC in stream water at Birkenes, and 27 ± 3%, 20 ± 2% and 56 ± 5% of the correspondent variations at Storgama, Langtjern and Kaarvatn, during the respective monitoring periods. The remaining variations in acid neutralizing capacity are explained by the difference between non-marine base cations (ΣCa*,Mg*,K*) and non-marine sulphate (SO4*) and NO3. This paper also indicates that seasalt episodes are probably of greater importance for the periodic variations in ANC of stream water than commonly recognized. During the last years, extreme seasalt episodes have occurred in southern Norway, and more frequently at winter-time, which means that seasalt inputs have played a more important role for the short-term variations of ANC in stream water the last years. This tendency is also strengthened by the fact that there has been a significant decline in the input of acidic sulphur compounds and non-marine base cations in stream water during the last 10-15 years. Because the decline in soil-derived base cations in stream water is somewhat lower than the correspondent decline of sulphate, a slowly improving ANC of stream water should be expected on long-term basis. Seasalt episodes of the same magnitude as those present during the last years, will therefore most likely cause less extreme water-chemical conditions in the years to come. Because the seasalt effect seems to be a short-term effect, there is no reason to claim that these effects may cause long-term acidification, a conclusion earlier drawn from several correspondent studies.


2010 ◽  
Vol 67 (7) ◽  
pp. 1116-1125 ◽  
Author(s):  
Anneli Ågren ◽  
Ishi Buffam ◽  
Kevin Bishop ◽  
Hjalmar Laudon

Increased forest harvest with more whole-tree utilization can decrease base cations (BC) in soils and stream runoff. This paper analyses how reducing stream BC changes the capacity of a boreal stream network to buffer pH changes. We estimated change in stream pH during spring snowmelt in 60 locations throughout a 68 km2 boreal catchment in northern Sweden with different scenarios of BC removal from stream water ranging from 10 to 50 µequiv.·L–1. The pH decreased in all scenarios, and if BC decreased by 50 µequiv.·L–1, stream length with pH above the acid threshold pH 5 during spring snowmelt decreased from 82% to 44% of the stream network, whereas the stream length with pH above 5.5 decreased from 60% to 10%. The pH sensitivity of different stream reaches to reductions in BC was positively related to the slope of the catchment, forest cover, and forested mires, whereas it was negatively related to the percentage of agricultural fields. Because the long-term effect of different forestry practices on stream BC is unclear, there is all the more reason to evaluate BC sensitivity before, rather than after, eventual problems arise.


2013 ◽  
Vol 10 (8) ◽  
pp. 12849-12885
Author(s):  
H. Borg ◽  
M. Sundbom

Abstract. The water chemistry of streams and precipitation in the province of Jämtland, northern Sweden has been monitored since the 1980s to study long-term trends, occurrence of acid episodes, and effects of liming. The acidity and sulphur in precipitation increased in the 1970s, followed by a loss of ANC and low pH in the streams. Sulphur deposition begun to decrease in the 1980s, until approximately 2000, after which the decrease levelled out. The stream water sulphate followed the precipitation trend but decreased more slowly and since the late 1990s a subtle increase was observed. The sulphate concentrations in the snow have generally been higher than or equal to the stream sulphate levels. Since 2005, stream sulphate has sometimes exceeded snow sulphate, indicating desorption of stored soil sulphate, possibly because of climate related changes in run-off routes through the soil profiles, following shorter periods of frost. Up to 2000, TOC increased by approximately 0.1 mg L−1 yr−1. The mean trends in sulphate and TOC from approximately 1990 until today are generally opposite. Acidic episodes with pH 4.0 at flow peaks occurred frequently in the unlimed streams, despite relatively well buffered waters at base flow. To evaluate the main causes for the loss of ANC, the changes in major ions during high flow were calculated. The most important contribution resulted from dilution of base cations, with contribution from organic anions. Sulphate also had some influence, as it was somewhat enriched or only slightly diluted during high flow. Wetland liming started in 1985 after which the earlier observed extreme peak values of Fe, Mn and Al, did not return. The studied area is remote from emission sources in Europe, but the critical load of acidity is still exceeded. The long-term recovery observed in the unlimed streams is thus slow, and severe acidic episodes still occur.


2014 ◽  
Vol 11 (1) ◽  
pp. 173-184 ◽  
Author(s):  
H. Borg ◽  
M. Sundbom

Abstract. The water chemistry of streams and precipitation in the province of Jämtland, northern Sweden has been monitored since the 1980s to study long-term trends, occurrence of acid episodes, and effects of liming. The acidity in precipitation increased in the 1970s, followed by a loss of acid neutralizing capacity (ANC) and low pH in the streams. Sulfur deposition began to decrease in the 1980s, until approximately 2000, after which the decrease levelled out. Stream water sulfate concentration followed the precipitation trend but decreased more slowly and since the late 1990s a subtle increase was observed. Sulfate concentrations in the snow typically have been higher than or equal to the stream sulfate levels. However, during the period of rapid deposition decrease and also since 2005 stream sulfate has sometimes exceeded snow sulfate, indicating desorption of stored soil sulfate, possibly because of climate-related changes in run-off routes through the soil profiles, following shorter periods of frost. From 1982 to 2000, total organic carbon (TOC) increased by approximately 0.1 mg L−1 yr−1. The mean trends in sulfate and TOC from approximately 1990 until today were generally opposite. Acidic episodes with pH 4.0 at flow peaks occurred frequently in the unlimed streams, despite relatively well-buffered waters at baseflow. To evaluate the main causes for the loss of ANC during episodes, the changes in major ion concentrations during high flow episodes were evaluated. The most important factors contributing to ANC loss were dilution of base cations (Na+, K+, Ca2+, Mg2+), enrichment of organic anions and enrichment of sulfate. Wetland liming started in 1985 after which the earlier observed extreme peak values of iron, manganese and aluminium, did not reoccur. The studied area is remote from emission sources in Europe, but the critical load of acidity is still exceeded. The long-term recovery observed in the unlimed streams is thus slow, and severe acidic episodes still occur.


2000 ◽  
Vol 4 (3) ◽  
pp. 383-391 ◽  
Author(s):  
S. A. Norton ◽  
R. Wagai ◽  
T. Navratil ◽  
J. M. Kaste ◽  
F. A. Rissberger

Abstract. An experimental short-term acidification with HCl at a first-order stream in central Maine, USA was used to study processes controlling the changes in stream chemistry and to assess the ability of stream substrate to buffer pH. The streambed exerted a strong buffering capacity against pH change by ion exchange during the 6-hour acidification. Streambed substrates had substantial cation and anion exchange capacity in the pH range of 4.1 to 6.5. The ion exchange for cations and SO42- were rapid and reversible. The speed of release of cations from stream substrates was Na1+> Ca2+ > Mg2+ > Aln+ > Be2+, perhaps relating to charge density of these cations. Ca2+ desorption dominated neutralisation of excess H+ for the first 2 hr. As the reservoir of exchangeable Ca diminished, desorption (and possibly dissolution) of Al3+ became the dominant neutralising mechanism. The exchangeable (and possibly soluble) reservoir of Al was not depleted during the 6-hour acidification. Sulphate adsorption during the acidification reduced the concentration of SO42- in stream water by as much as 20 μeq L-1 (from 70 μeq L-1). Desorption of SO42- and adsorption of base cations after the artificial acidification resulted in a prolongation of the pH depression. The streambed had the capacity to buffer stream water chemistry significantly during an acidifying event affecting the entire upstream catchment. Keywords: stream acidification; ion exchange; sediment; sulfate exchange; aluminium; beryllium


2004 ◽  
Vol 61 (10) ◽  
pp. 1965-1975 ◽  
Author(s):  
Thomas A Clair ◽  
Ian F Dennis ◽  
Peter G Amiro ◽  
B J Cosby

Atlantic salmon (Salmo salar) populations have been extirpated from a number of rivers in Nova Scotia, Canada, as a result of acid rain. We applied the model of acidification of groundwater in catchments (MAGIC) to 35 regional rivers to estimate pre-industrial water chemistry conditions and the potential future changes in water chemistry under three acid deposition scenarios for the region. Our model results indicate that water chemistry in the study streams remained relatively unchanged until the 1950s and reached their maximum effects on pH in the mid-1970s. The main effects of acid deposition have been a decrease in pH and an increase in base cations to surface waters, as the ion-exchange processes in soils release soil cations into surface waters. We forecast future water chemistry in the rivers using three deposition scenarios: no change in sulfate deposition from year 2000 and 10% and 20% sulfate reductions per decade. We show that the more rapid the reduction in acid deposition, the faster the recovery. We also show that although stream water acidity will recover within a few decades, in most streams, base cations will not recover to pre-industrial levels within the next 100 years.


Sign in / Sign up

Export Citation Format

Share Document