scholarly journals Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances

2013 ◽  
Vol 10 (1) ◽  
pp. 1127-1183 ◽  
Author(s):  
T. Conradt ◽  
F. Wechsung ◽  
A. Bronstert

Abstract. A problem encountered by many distributed hydrological modelling studies is high simulation errors at interior gauges when the model is only globally calibrated at the outlet. We simulated river runoff in the Elbe River basin in Central Europe (148 268 km2) with the semi-distributed eco-hydrological model SWIM. While global parameter optimisation led to Nash–Sutcliffe efficiencies of 0.9 at the main outlet gauge, comparisons with measured runoff series at interior points revealed large deviations. Therefore, we compared three different stategies for deriving sub-basin evapotranspiration: (1) modelled by SWIM without any spatial calibration, (2) derived from remotely sensed surface temperatures, and (3) calculated from long-term precipitation and discharge data. The results show certain consistencies between the modelled and the remote sensing based evapotranspiration rates, but there seems to be no correlation between remote sensing and water balance based estimations. Subsequent analyses for single sub-basins identify input weather data and systematic error amplification in inter-gauge discharge calculations as sources of uncertainty. Further probable causes for epistemic uncertainties could be pinpointed. The results encourage careful utilisation of different data sources for calibration and validation procedures in distributed hydrological modelling.

2013 ◽  
Vol 17 (7) ◽  
pp. 2947-2966 ◽  
Author(s):  
T. Conradt ◽  
F. Wechsung ◽  
A. Bronstert

Abstract. A problem encountered by many distributed hydrological modelling studies is high simulation errors at interior gauges when the model is only globally calibrated at the outlet. We simulated river runoff in the Elbe River basin in central Europe (148 268 km2) with the semi-distributed eco-hydrological model SWIM (Soil and Water Integrated Model). While global parameter optimisation led to Nash–Sutcliffe efficiencies of 0.9 at the main outlet gauge, comparisons with measured runoff series at interior points revealed large deviations. Therefore, we compared three different strategies for deriving sub-basin evapotranspiration: (1) modelled by SWIM without any spatial calibration, (2) derived from remotely sensed surface temperatures, and (3) calculated from long-term precipitation and discharge data. The results show certain consistencies between the modelled and the remote sensing based evapotranspiration rates, but there seems to be no correlation between remote sensing and water balance based estimations. Subsequent analyses for single sub-basins identify amongst others input weather data and systematic error amplification in inter-gauge discharge calculations as sources of uncertainty. The results encourage careful utilisation of different data sources for enhancements in distributed hydrological modelling.


2014 ◽  
Vol 18 (6) ◽  
pp. 2343-2357 ◽  
Author(s):  
N. Wanders ◽  
D. Karssenberg ◽  
A. de Roo ◽  
S. M. de Jong ◽  
M. F. P. Bierkens

Abstract. We evaluate the added value of assimilated remotely sensed soil moisture for the European Flood Awareness System (EFAS) and its potential to improve the prediction of the timing and height of the flood peak and low flows. EFAS is an operational flood forecasting system for Europe and uses a distributed hydrological model (LISFLOOD) for flood predictions with lead times of up to 10 days. For this study, satellite-derived soil moisture from ASCAT (Advanced SCATterometer), AMSR-E (Advanced Microwave Scanning Radiometer - Earth Observing System) and SMOS (Soil Moisture and Ocean Salinity) is assimilated into the LISFLOOD model for the Upper Danube Basin and results are compared to assimilation of discharge observations only. To assimilate soil moisture and discharge data into the hydrological model, an ensemble Kalman filter (EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satellite products, is included to ensure increased performance of the EnKF. For the validation, additional discharge observations not used in the EnKF are used as an independent validation data set. Our results show that the accuracy of flood forecasts is increased when more discharge observations are assimilated; the mean absolute error (MAE) of the ensemble mean is reduced by 35%. The additional inclusion of satellite data results in a further increase of the performance: forecasts of baseflows are better and the uncertainty in the overall discharge is reduced, shown by a 10% reduction in the MAE. In addition, floods are predicted with a higher accuracy and the continuous ranked probability score (CRPS) shows a performance increase of 5–10% on average, compared to assimilation of discharge only. When soil moisture data is used, the timing errors in the flood predictions are decreased especially for shorter lead times and imminent floods can be forecasted with more skill. The number of false flood alerts is reduced when more observational data is assimilated into the system. The added values of the satellite data is largest when these observations are assimilated in combination with distributed discharge observations. These results show the potential of remotely sensed soil moisture observations to improve near-real time flood forecasting in large catchments.


2008 ◽  
Vol 12 (3) ◽  
pp. 751-767 ◽  
Author(s):  
T. Vischel ◽  
G. G. S. Pegram ◽  
S. Sinclair ◽  
W. Wagner ◽  
A. Bartsch

Abstract. The paper compares two independent approaches to estimate soil moisture at the regional scale over a 4625 km2 catchment (Liebenbergsvlei, South Africa). The first estimate is derived from a physically-based hydrological model (TOPKAPI). The second estimate is derived from the scatterometer on board the European Remote Sensing satellite (ERS). Results show a good correspondence between the modelled and remotely sensed soil moisture, particularly with respect to the soil moisture dynamic, illustrated over two selected seasons of 8 months, yielding regression R2 coefficients lying between 0.68 and 0.92. Such a close similarity between these two different, independent approaches is very promising for (i) remote sensing in general (ii) the use of hydrological models to back-calculate and disaggregate the satellite soil moisture estimate and (iii) for hydrological models to assimilate the remotely sensed soil moisture.


2020 ◽  
Vol 24 (6) ◽  
pp. 3331-3359 ◽  
Author(s):  
Petra Hulsman ◽  
Hessel C. Winsemius ◽  
Claire I. Michailovsky ◽  
Hubert H. G. Savenije ◽  
Markus Hrachowitz

Abstract. Limited availability of ground measurements in the vast majority of river basins world-wide increases the value of alternative data sources such as satellite observations in hydrological modelling. This study investigates the potential of using remotely sensed river water levels, i.e. altimetry observations, from multiple satellite missions to identify parameter sets for a hydrological model in the semi-arid Luangwa River basin in Zambia. A distributed process-based rainfall–runoff model with sub-grid process heterogeneity was developed and run on a daily timescale for the time period 2002 to 2016. As a benchmark, feasible model parameter sets were identified using traditional model calibration with observed river discharge data. For the parameter identification using remote sensing, data from the Gravity Recovery and Climate Experiment (GRACE) were used in a first step to restrict the feasible parameter sets based on the seasonal fluctuations in total water storage. Next, three alternative ways of further restricting feasible model parameter sets using satellite altimetry time series from 18 different locations along the river were compared. In the calibrated benchmark case, daily river flows were reproduced relatively well with an optimum Nash–Sutcliffe efficiency of ENS,Q=0.78 (5/95th percentiles of all feasible solutions ENS,Q,5/95=0.61–0.75). When using only GRACE observations to restrict the parameter space, assuming no discharge observations are available, an optimum of ENS,Q=-1.4 (ENS,Q,5/95=-2.3–0.38) with respect to discharge was obtained. The direct use of altimetry-based river levels frequently led to overestimated flows and poorly identified feasible parameter sets (ENS,Q,5/95=-2.9–0.10). Similarly, converting modelled discharge into water levels using rating curves in the form of power relationships with two additional free calibration parameters per virtual station resulted in an overestimation of the discharge and poorly identified feasible parameter sets (ENS,Q,5/95=-2.6–0.25). However, accounting for river geometry proved to be highly effective. This included using river cross-section and gradient information extracted from global high-resolution terrain data available on Google Earth and applying the Strickler–Manning equation to convert modelled discharge into water levels. Many parameter sets identified with this method reproduced the hydrograph and multiple other signatures of discharge reasonably well, with an optimum of ENS,Q=0.60 (ENS,Q,5/95=-0.31–0.50). It was further shown that more accurate river cross-section data improved the water-level simulations, modelled rating curve, and discharge simulations during intermediate and low flows at the basin outlet where detailed on-site cross-section information was available. Also, increasing the number of virtual stations used for parameter selection in the calibration period considerably improved the model performance in a spatial split-sample validation. The results provide robust evidence that in the absence of directly observed discharge data for larger rivers in data-scarce regions, altimetry data from multiple virtual stations combined with GRACE observations have the potential to fill this gap when combined with readily available estimates of river geometry, thereby allowing a step towards more reliable hydrological modelling in poorly gauged or ungauged basins.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1615 ◽  
Author(s):  
Dejuan Jiang ◽  
Kun Wang

A hydrological model is a useful tool to study the effects of human activities and climate change on hydrology. Accordingly, the performance of hydrological modeling is vitally significant for hydrologic predictions. In watersheds with intense human activities, there are difficulties and uncertainties in model calibration and simulation. Alternative approaches, such as machine learning techniques and coupled models, can be used for streamflow predictions. However, these models also suffer from their respective limitations, especially when data are unavailable. Satellite-based remote sensing may provide a valuable contribution for hydrological predictions due to its wide coverage and increasing tempo-spatial resolutions. In this review, we provide an overview of the role of satellite-based remote sensing in streamflow simulation. First, difficulties in hydrological modeling over highly regulated basins are further discussed. Next, the performance of satellite-based remote sensing (e.g., remotely sensed data for precipitation, evapotranspiration, soil moisture, snow properties, terrestrial water storage change, land surface temperature, river width, etc.) in improving simulated streamflow is summarized. Then, the application of data assimilation for merging satellite-based remote sensing with a hydrological model is explored. Finally, a framework, using remotely sensed observations to improve streamflow predictions in highly regulated basins, is proposed for future studies. This review can be helpful to understand the effect of applying satellite-based remote sensing on hydrological modeling.


2011 ◽  
Vol 15 (3) ◽  
pp. 759-769 ◽  
Author(s):  
J. M. Schuurmans ◽  
F. C. van Geer ◽  
M. F. P. Bierkens

Abstract. This study shows that remotely sensed ETact is useful in hydrological modelling for the procedure of model calibration and shows it potential to update soil moisture predictions. Comparison of modeled and remotely sensed ETact together with the outcomes of our data assimilation procedure points out potential model errors, both conceptual and flux-related. Assimilation of remotely sensed ETact results in a realistic spatial adjustment of soil moisture, except for the area where the model suffers from conceptual errors (forest with deep groundwater levels). By using operational (i.e. available for community in practice) data and models we aim to show the potential and limitations of using remotely sensed ETact in the practice of hydrological modelling. We use satellite data of both ASTER and MODIS for the same two days in the summer of 2006 that, in association with the Surface Energy Balance Algorithm for Land (SEBAL), provides us the spatial distribution of daily ETact. The model, used by the local water board, is a physically based distributed hydrological model of a small catchment (70 km2) in The Netherlands that simulates the water flow in both the unsaturated and saturated zone. Model outcomes of ETact show values that are at least 20% lower than those estimated by SEBAL, which is due to the fact that different evapotranspiration methods are used. The spatial pattern of ETact from the hydrological model resembles the soil map, whereas the ETact from SEBAL resembles the land use map. As both ASTER and MODIS images were available for the same days, this study provides an opportunity to compare the worth of these two satellite sources. It is shown that, although ASTER provides better insight in the spatial distribution of ETact due to its higher spatial resolution than MODIS, they appeared in this study just as useful.


2012 ◽  
Vol 12 (5) ◽  
pp. 1573-1582 ◽  
Author(s):  
M. Egüen ◽  
C. Aguilar ◽  
J. Herrero ◽  
A. Millares ◽  
M. J. Polo

Abstract. This paper studies the influence of changing spatial resolution on the implementation of distributed hydrological modelling for water resource planning in Mediterranean areas. Different cell sizes were used to investigate variations in the basin hydrologic response given by the model WiMMed, developed in Andalusia (Spain), in a selected watershed. The model was calibrated on a monthly basis from the available daily flow data at the reservoir that closes the watershed, for three different cell sizes, 30, 100, and 500 m, and the effects of this change on the hydrological response of the basin were analysed by means of the comparison of the hydrological variables at different time scales for a 3-yr-period, and the effective values for the calibration parameters obtained for each spatial resolution. The variation in the distribution of the input parameters due to using different spatial resolutions resulted in a change in the obtained hydrological networks and significant differences in other hydrological variables, both in mean basin-scale and values distributed in the cell level. Differences in the magnitude of annual and global runoff, together with other hydrological components of the water balance, became apparent. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of a distributed hydrological model to reach a balance between the quality of results and the computational cost; thus, 30 and 100-m could be chosen for water resource management, without significant decrease in the accuracy of the simulation, but the 500-m cell size resulted in significant overestimation of runoff and consequently, could involve uncertain decisions based on the expected availability of rainfall excess for storage in the reservoirs. Particular values of the effective calibration parameters are also provided for this hydrological model and the study area.


2021 ◽  
Vol 13 (16) ◽  
pp. 3299
Author(s):  
Javier Senent-Aparicio ◽  
Pablo Blanco-Gómez ◽  
Adrián López-Ballesteros ◽  
Patricia Jimeno-Sáez ◽  
Julio Pérez-Sánchez

Hydrological modelling requires accurate climate data with high spatial-temporal resolution, which is often unavailable in certain parts of the world—such as Central America. Numerous studies have previously demonstrated that in hydrological modelling, global weather reanalysis data provides a viable alternative to observed data. However, calibrating and validating models requires the use of observed discharge data, which is also frequently unavailable. Recent, global-scale applications have been developed based on weather data from reanalysis; these applications allow streamflows with satisfactory resolution to be obtained. An example is the Global Flood Awareness System (GloFAS), which uses the fifth generation of reanalysis data produced by the European Centre for Medium-Range Weather Forecasts (ERA5) as input. It provides discharge data from 1979 to the present with a resolution of 0.1°. This study assesses the potential of GloFAS for calibrating hydrological models in ungauged basins. For this purpose, the quality of data from ERA5 and from the Climate Hazards Group InfraRed Precipitation and Temperature with Station as well as the Climate Forecast System Reanalysis (CFSR) was analysed. The focus was on flow simulation using the Soil and Water Assessment Tool (SWAT) model. The models were calibrated using GloFAS discharge data. Our results indicate that all the reanalysis datasets displayed an acceptable fit with the observed precipitation and temperature data. The correlation coefficient (CC) between the reanalysis data and the observed data indicates a strong relationship at the monthly level all of the analysed stations (CC > 0.80). The Kling–Gupta Efficiency (KGE) also showed the acceptable performance of the calibrated SWAT models (KGE > 0.74). We concluded that GloFAS data has substantial potential for calibrating hydrological models that estimate the monthly streamflow in ungauged watersheds. This approach can aid water resource management.


Sign in / Sign up

Export Citation Format

Share Document