scholarly journals Evaluating the Potential of GloFAS-ERA5 River Discharge Reanalysis Data for Calibrating the SWAT Model in the Grande San Miguel River Basin (El Salvador)

2021 ◽  
Vol 13 (16) ◽  
pp. 3299
Author(s):  
Javier Senent-Aparicio ◽  
Pablo Blanco-Gómez ◽  
Adrián López-Ballesteros ◽  
Patricia Jimeno-Sáez ◽  
Julio Pérez-Sánchez

Hydrological modelling requires accurate climate data with high spatial-temporal resolution, which is often unavailable in certain parts of the world—such as Central America. Numerous studies have previously demonstrated that in hydrological modelling, global weather reanalysis data provides a viable alternative to observed data. However, calibrating and validating models requires the use of observed discharge data, which is also frequently unavailable. Recent, global-scale applications have been developed based on weather data from reanalysis; these applications allow streamflows with satisfactory resolution to be obtained. An example is the Global Flood Awareness System (GloFAS), which uses the fifth generation of reanalysis data produced by the European Centre for Medium-Range Weather Forecasts (ERA5) as input. It provides discharge data from 1979 to the present with a resolution of 0.1°. This study assesses the potential of GloFAS for calibrating hydrological models in ungauged basins. For this purpose, the quality of data from ERA5 and from the Climate Hazards Group InfraRed Precipitation and Temperature with Station as well as the Climate Forecast System Reanalysis (CFSR) was analysed. The focus was on flow simulation using the Soil and Water Assessment Tool (SWAT) model. The models were calibrated using GloFAS discharge data. Our results indicate that all the reanalysis datasets displayed an acceptable fit with the observed precipitation and temperature data. The correlation coefficient (CC) between the reanalysis data and the observed data indicates a strong relationship at the monthly level all of the analysed stations (CC > 0.80). The Kling–Gupta Efficiency (KGE) also showed the acceptable performance of the calibrated SWAT models (KGE > 0.74). We concluded that GloFAS data has substantial potential for calibrating hydrological models that estimate the monthly streamflow in ungauged watersheds. This approach can aid water resource management.

Author(s):  
X. Cui ◽  
W. Sun ◽  
J. Teng ◽  
H. Song ◽  
X. Yao

Abstract. Calibration of hydrological models in ungauged basins is now a hot research topic in the field of hydrology. In addition to the traditional method of parameter regionalization, using discontinuous flow observations to calibrate hydrological models has gradually become popular in recent years. In this study, the possibility of using a limited number of river discharge data to calibrate a distributed hydrological model, the Soil and Water Assessment Tool (SWAT), was explored. The influence of the quantity of discharge measurements on model calibration in the upper Heihe Basin was analysed. Calibration using only one year of daily discharge measurements was compared with calibration using three years of discharge data. The results showed that the parameter values derived from calibration using one year’s data could achieve similar model performance with calibration using three years’ data, indicating that there is a possibility of using limited numbers of discharge data to calibrate the SWAT model effectively in poorly gauged basins.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3288
Author(s):  
Dandan Zhang ◽  
Mou Leong Tan ◽  
Sharifah Rohayah Sheikh Dawood ◽  
Narimah Samat ◽  
Chun Kiat Chang ◽  
...  

Identification of reliable alternative climate input data for hydrological modelling is important to manage water resources and reduce water-related hazards in ungauged or poorly gauged basins. This study aims to evaluate the capability of the National Centers for Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR) and China Meteorological Assimilation Driving Dataset for the Soil and Water Assessment Tool (SWAT) model (CMADS) for simulating streamflow in the Muda River Basin (MRB), Malaysia. The capability was evaluated in two perspectives: (1) the climate aspect—validation of precipitation, maximum and minimum temperatures from 2008 to 2014; and (2) the hydrology aspect—comparison of the accuracy of SWAT modelling by the gauge station, NCEP-CFSR and CMADS products. The results show that CMADS had a better performance than NCEP-CFSR in the climate aspect, especially for the temperature data and daily precipitation detection capability. For the hydrological aspect, the gauge station had a “very good” performance in a monthly streamflow simulation, followed by CMADS and NCEP-CFSR. In detail, CMADS showed an acceptable performance in SWAT modelling, but some improvements such as bias correction and further SWAT calibration are needed. In contrast, NCEP-CFRS had an unacceptable performance in validation as it dramatically overestimated the low flows of MRB and contains time lag in peak flows estimation.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1511
Author(s):  
Jung-Ryel Choi ◽  
Il-Moon Chung ◽  
Se-Jin Jeung ◽  
Kyung-Su Choo ◽  
Cheong-Hyeon Oh ◽  
...  

Climate change significantly affects water supply availability due to changes in the magnitude and seasonality of runoff and severe drought events. In the case of Korea, despite high water supply ratio, more populations have continued to suffer from restricted regional water supplies. Though Korea enacted the Long-Term Comprehensive Water Resources Plan, a field survey revealed that the regional government organizations limitedly utilized their drought-related data. These limitations present a need for a system that provides a more intuitive drought review, enabling a more prompt response. Thus, this study presents a rating curve for the available number of water intake days per flow, and reviews and calibrates the Soil and Water Assessment Tool (SWAT) model mediators, and found that the coefficient of determination, Nash–Sutcliffe efficiency (NSE), and percent bias (PBIAS) from 2007 to 2011 were at 0.92, 0.84, and 7.2%, respectively, which were “very good” levels. The flow recession curve was proposed after calculating the daily long-term flow and extracted the flow recession trends during days without precipitation. In addition, the SWAT model’s flow data enables the quantitative evaluations of the number of available water intake days without precipitation because of the high hit rate when comparing the available number of water intake days with the limited water supply period near the study watershed. Thus, this study can improve drought response and water resource management plans.


2018 ◽  
Vol 49 (3) ◽  
pp. 908-923 ◽  
Author(s):  
Richarde Marques da Silva ◽  
José Carlos Dantas ◽  
Joyce de Araújo Beltrão ◽  
Celso A. G. Santos

Abstract A Soil and Water Assessment Tool (SWAT) model was used to model streamflow in a tropical humid basin in the Cerrado biome, southeastern Brazil. This study was undertaken in the Upper São Francisco River basin, because this basin requires effective management of water resources in drought and high-flow periods. The SWAT model was calibrated for the period of 1978–1998 and validated for 1999–2007. To assess the model calibration and uncertainty, four indices were used: (a) coefficient of determination (R2); (b) Nash–Sutcliffe efficiency (NS); (c) p-factor, the percentage of data bracketed by the 95% prediction uncertainty (95PPU); and (d) r-factor, the ratio of average thickness of the 95PPU band to the standard deviation of the corresponding measured variable. In this paper, average monthly streamflow from three gauges (Porto das Andorinhas, Pari and Ponte da Taquara) were used. The results indicated that the R2 values were 0.73, 0.80 and 0.76 and that the NS values were 0.68, 0.79 and 0.73, respectively, during the calibration. The validation also indicated an acceptable performance with R2 = 0.80, 0.76, 0.60 and NS = 0.61, 0.64 and 0.58, respectively. This study demonstrates that the SWAT model provides a satisfactory tool to assess basin streamflow and management in Brazil.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 594 ◽  
Author(s):  
Majid Fereidoon ◽  
Manfred Koch ◽  
Luca Brocca

Hydrological models are widely used for many purposes in water sector projects, including streamflow prediction and flood risk assessment. Among the input data used in such hydrological models, the spatial-temporal variability of rainfall datasets has a significant role on the final discharge estimation. Therefore, accurate measurements of rainfall are vital. On the other hand, ground-based measurement networks, mainly in developing countries, are either nonexistent or too sparse to capture rainfall accurately. In addition to in-situ rainfall datasets, satellite-derived rainfall products are currently available globally with high spatial and temporal resolution. An innovative approach called SM2RAIN that estimates rainfall from soil moisture data has been applied successfully to various regions. In this study, first, soil moisture content derived from the Advanced Microwave Scanning Radiometer for the Earth observing system (AMSR-E) is used as input into the SM2RAIN algorithm to estimate daily rainfall (SM2R-AMSRE) at different sites in the Karkheh river basin (KRB), southwest Iran. Second, the SWAT (Soil and Water Assessment Tool) hydrological model was applied to simulate runoff using both ground-based observed rainfall and SM2R-AMSRE rainfall as input. The results reveal that the SM2R-AMSRE rainfall data are, in most cases, in good agreement with ground-based rainfall, with correlations R ranging between 0.58 and 0.88, though there is some underestimation of the observed rainfall due to soil moisture saturation not accounted for in the SM2RAIN equation. The subsequent SWAT-simulated monthly runoff from SM2R-AMSRE rainfall data (SWAT-SM2R-AMSRE) reproduces the observations at the six gauging stations (with coefficient of determination, R² > 0.71 and NSE > 0.56), though with slightly worse performances in terms of bias (Bias) and root-mean-square error (RMSE) and, again, some systematic flow underestimation compared to the SWAT model with ground-based rainfall input. Additionally, rainfall estimates of two satellite products of the Tropical Rainfall Measuring Mission (TRMM), 3B42 and 3B42RT, are used in the calibrated SWAT- model after bias correction. The monthly runoff predictions obtained with 3B42- rainfall have 0.42 < R2 < 0.72 and−0.06 < NSE < 0.74 which are slightly better than those obtained with 3B42RT- rainfall, but not as good as the SWAT-SM2R-AMSRE. Therefore, despite the aforementioned limitations, using SM2R-AMSRE rainfall data in a hydrological model like SWAT appears to be a viable approach in basins with limited ground-based rainfall data.


2019 ◽  
Vol 11 (4) ◽  
pp. 980-991 ◽  
Author(s):  
Aidi Huo ◽  
Xiaofan Wang ◽  
Yan Liang ◽  
Cheng Jiang ◽  
Xiaolu Zheng

Abstract The likelihood of future global water shortages is increasing and further development of existing operational hydrologic models is needed to maintain sustainable development of the ecological environment and human health. In order to quantitatively describe the water balance factors and transformation relations, the objective of this article is to develop a distributed hydrologic model that is capable of simulating the surface water (SW) and groundwater (GW) in irrigation areas. The model can be used as a tool for evaluating the long-term effects of water resource management. By coupling the Soil and Water Assessment Tool (SWAT) and MODFLOW models, a comprehensive hydrological model integrating SW and GW is constructed. The hydrologic response units for the SWAT model are exchanged with cells in the MODFLOW model. Taking the Heihe River Basin as the study area, 10 years of historical data are used to conduct an extensive sensitivity analysis on model parameters. The developed model is run for a 40-year prediction period. The application of the developed coupling model shows that since the construction of the Heihe reservoir, the average GW level in the study area has declined by 6.05 m. The model can accurately simulate and predict the dynamic changes in SW and GW in the downstream irrigation area of Heihe River Basin and provide a scientific basis for water management in an irrigation district.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1177 ◽  
Author(s):  
Lufang Zhang ◽  
Baolin Xue ◽  
Yuhui Yan ◽  
Guoqiang Wang ◽  
Wenchao Sun ◽  
...  

Distributed hydrological models play a vital role in water resources management. With the rapid development of distributed hydrological models, research into model uncertainty has become a very important field. When studying traditional hydrological model uncertainty, it is very common to use multisite observation data to evaluate the performance of the model in the same watershed, but there are few studies on uncertainty in watersheds with different characteristics. This study is based on the Soil and Water Assessment Tool (SWAT) model, and uses two common methods: Sequential Uncertainty Fitting Version 2 (SUFI-2) and Generalized Likelihood Uncertainty Estimation (GLUE) for uncertainty analysis. We compared these methods in terms of parameter uncertainty, model prediction uncertainty, and simulation effects. The Xiaoqing River basin and the Xinxue River basin, which have different characteristics, including watershed geography and scale, were used for the study areas. The results show that the GLUE method had better applicability in the Xiaoqing River basin, and that the SUFI-2 method provided more reasonable and accurate analysis results in the Xinxue River basin; thus, the applicability was higher. The uncertainty analysis method is affected to some extent by the characteristics of the watershed.


Author(s):  
N. C. Sanjay Shekar ◽  
D. C. Vinay

Abstract The present study was conducted to examine the accuracy and applicability of the hydrological models Soil and Water Assessment Tool (SWAT) and Hydrologic Engineering Center (HEC)- Hydrologic Modeling System (HMS) to simulate streamflows. Models combined with the ArcGIS interface have been used for hydrological study in the humid tropical Hemavathi catchment (5,427 square kilometer). The critical focus of the streamflow analysis was to determine the efficiency of the models when the models were calibrated and optimized using observed flows in the simulation of streamflows. Daily weather gauge stations data were used as inputs for the models from 2014–2020 period. Other data inputs required to run the models included land use/land cover (LU/LC) classes resulting from remote sensing satellite imagery, soil map and digital elevation model (DEM). For evaluating the model performance and calibration, daily stream discharge from the catchment outlet data were used. For the SWAT model calibration, available water holding capacity by soil (SOL_AWC), curve number (CN) and soil evaporation compensation factor (ESCO) are identified as the sensitive parameters. Initial abstraction (Ia) and lag time (Tlag) are the significant parameters identified for the HEC-HMS model calibration. The models were subsequently adjusted by autocalibration for 2014–2017 to minimize the variations in simulated and observed streamflow values at the catchment outlet (Akkihebbal). The hydrological models were validated for the 2018–2020 period by using the calibrated models. For evaluating the simulating daily streamflows during calibration and validation phases, performances of the models were conducted by using the Nash-Sutcliffe model efficiency (NSE) and coefficient of determination (R2). The SWAT model yielded high R2 and NSE values of 0.85 and 0.82 for daily streamflow comparisons for the catchment outlet at the validation time, suggesting that the SWAT model showed relatively good results than the HEC-HMS model. Also, under modified LU/LC and ungauged streamflow conditions, the calibrated models can be later used to simulate streamflows for future predictions. Overall, the SWAT model seems to have done well in streamflow analysis capably for hydrological studies.


Author(s):  
Gengxi Zhang ◽  
Xiaoling Su ◽  
Olusola O. Ayantobo ◽  
Kai Feng ◽  
Jing Guo

Precipitation and temperature are significant inputs for hydrological models. Currently, many satellite and reanalysis precipitation and air temperature datasets exist at different spatio-temporal resolutions at a global and quasi-global scale. This study evaluated the performances of three open-access precipitation datasets (gauge-adjusted research-grade Global Satellite Mapping of Precipitation (GSMaP_Gauge), Climate Hazards Group Infrared Precipitation with Station data (CHIRPS), Climate Forecast System Reanalysis(CFSR)) and CFSR air temperature dataset in driving the Soil and Water Assessment Tool (SWAT) model required for the monthly simulation of streamflow in the upper Shiyang River Basin of northwest China. After a thorough comparison of six model scenarios with different combinations of precipitation and air temperature inputs, the following conclusions were drawn: (1) Although the precipitation products had similar spatial patterns, however, CFSR differs significantly by showing an overestimation; (2) CFSR air temperature yielded almost identical performance in the streamflow simulation than the measured air temperature from gauge stations; (3) among the three open-access precipitation datasets, CHIRPS produced the best performance. These results suggested that the CHIRPS precipitation and CFSR air temperature datasets which are available at high spatial resolution (0.05), could be a promising alternative open-access data source for streamflow simulation in the case of limited access to desirable gauge data in the data-scarce area.


2013 ◽  
Vol 10 (11) ◽  
pp. 13955-13978 ◽  
Author(s):  
A. A. Shawul ◽  
T. Alamirew ◽  
M. O. Dinka

Abstract. To utilize water resources in a sustainable manner, it is necessary to understand the quantity and quality in space and time. This study was initiated to evaluate the performance and applicability of the physically based Soil and Water Assessment Tool (SWAT) model in analyzing the influence of hydrologic parameters on the streamflow variability and estimation of monthly and seasonal water yield at the outlet of Shaya mountainous watershed. The calibrated SWAT model performed well for simulation of monthly streamflow. Statistical model performance measures, coefficient of determination (r2) of 0.71, the Nash–Sutcliffe simulation efficiency (ENS) of 0.71 and percent difference (D) of 3.69, for calibration and 0.76, 0.75 and 3.30, respectively for validation, indicated good performance of the model simulation on monthly time step. Mean monthly and annual water yield simulated with the calibrated model were found to be 25.8 mm and 309.0 mm, respectively. Overall, the model demonstrated good performance in capturing the patterns and trend of the observed flow series, which confirmed the appropriateness of the model for future scenario simulation. Therefore, SWAT model can be taken as a potential tool for simulation of the hydrology of unguaged watershed in mountainous areas, which behave hydro-meteorologically similar with Shaya watershed. Future studies on Shaya watershed modeling should address the issues related to water quality and evaluate best management practices.


Sign in / Sign up

Export Citation Format

Share Document