scholarly journals Comparison of soil moisture fields estimated by catchment modelling and remote sensing: a case study in South Africa

2007 ◽  
Vol 4 (4) ◽  
pp. 2273-2306 ◽  
Author(s):  
T. Vischel ◽  
G. Pegram ◽  
S. Sinclair ◽  
W. Wagner ◽  
A. Bartsch

Abstract. The paper compares two independent approaches to estimate soil moisture at the regional scale over a 4625 km2 catchment (Liebenbergsvlei, South Africa). The first estimate is derived from a physically-based hydrological model (TOPKAPI). The second estimate is derived from the scatterometer on board on the European Remote Sensing satellite (ERS). Results show a very good correspondence between the modelled and remotely sensed soil moisture, illustrated over two selected seasons of 8 months by regression R2 coefficients lying between 0.78 and 0.92. Such a close similarity between these two different, independent approaches is very promising for (i) remote sensing in general (ii) the use of hydrological models to back-calculate and disaggregate the satellite soil moisture estimate and (iii) for hydrological models to assimilate the remotely sensed soil moisture.


2008 ◽  
Vol 12 (3) ◽  
pp. 751-767 ◽  
Author(s):  
T. Vischel ◽  
G. G. S. Pegram ◽  
S. Sinclair ◽  
W. Wagner ◽  
A. Bartsch

Abstract. The paper compares two independent approaches to estimate soil moisture at the regional scale over a 4625 km2 catchment (Liebenbergsvlei, South Africa). The first estimate is derived from a physically-based hydrological model (TOPKAPI). The second estimate is derived from the scatterometer on board the European Remote Sensing satellite (ERS). Results show a good correspondence between the modelled and remotely sensed soil moisture, particularly with respect to the soil moisture dynamic, illustrated over two selected seasons of 8 months, yielding regression R2 coefficients lying between 0.68 and 0.92. Such a close similarity between these two different, independent approaches is very promising for (i) remote sensing in general (ii) the use of hydrological models to back-calculate and disaggregate the satellite soil moisture estimate and (iii) for hydrological models to assimilate the remotely sensed soil moisture.



2022 ◽  
Vol 260 ◽  
pp. 107298
Author(s):  
Minghan Cheng ◽  
Binbin Li ◽  
Xiyun Jiao ◽  
Xiao Huang ◽  
Haiyan Fan ◽  
...  


2021 ◽  
Vol 69 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Vesna Đukić ◽  
Ranka Erić ◽  
Miroslav Dumbrovsky ◽  
Veronika Sobotkova

Abstract The knowledge of spatio-temporal dynamics of soil moisture within the catchment is very important for rainfall–runoff modelling in flood forecasting. In this study the comparison between remotely sensed soil moisture and soil moisture estimated from the SHETRAN hydrological model was performed for small and flashy Jičinka River catchment (75.9 km2) in the Czech Republic. Due to a relatively coarse spatial resolution of satellite data, the satellite soil moisture data were downscaled, by applying the method developed by Qu et al. (2015). The sub-grid variability of soil moisture was estimated on the basis of the mean soil moisture for the grid cell and the known hydraulic soil properties. The SHETRAN model was calibrated and verified to the observed streamflow hydrographs at the catchment outlet. The good correlation between the two different soil moisture information was obtained according to the majority of applied criteria. The results of the evaluation criteria indicate that the downscaled remotely sensed soil moisture data can be used as additional criteria for the calibration and validation of hydrological models for small catchments and can contribute to a better estimation of parameters, to reduce uncertainties of hydrological models and improve runoff simulations.



2019 ◽  
Vol 11 (3) ◽  
pp. 284 ◽  
Author(s):  
Linglin Zeng ◽  
Shun Hu ◽  
Daxiang Xiang ◽  
Xiang Zhang ◽  
Deren Li ◽  
...  

Soil moisture mapping at a regional scale is commonplace since these data are required in many applications, such as hydrological and agricultural analyses. The use of remotely sensed data for the estimation of deep soil moisture at a regional scale has received far less emphasis. The objective of this study was to map the 500-m, 8-day average and daily soil moisture at different soil depths in Oklahoma from remotely sensed and ground-measured data using the random forest (RF) method, which is one of the machine-learning approaches. In order to investigate the estimation accuracy of the RF method at both a spatial and a temporal scale, two independent soil moisture estimation experiments were conducted using data from 2010 to 2014: a year-to-year experiment (with a root mean square error (RMSE) ranging from 0.038 to 0.050 m3/m3) and a station-to-station experiment (with an RMSE ranging from 0.044 to 0.057 m3/m3). Then, the data requirements, importance factors, and spatial and temporal variations in estimation accuracy were discussed based on the results using the training data selected by iterated random sampling. The highly accurate estimations of both the surface and the deep soil moisture for the study area reveal the potential of RF methods when mapping soil moisture at a regional scale, especially when considering the high heterogeneity of land-cover types and topography in the study area.



Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 692
Author(s):  
Boyu Mi ◽  
Haorui Chen ◽  
Shaoli Wang ◽  
Yinlong Jin ◽  
Jiangdong Jia ◽  
...  

The water movement research in irrigation districts is important for food production. Many hydrological models have been proposed to simulate the water movement on the regional scale, yet few of them have comprehensively considered processes in the irrigation districts. A novel physically based distributed model, the Irrigation Districts Model (IDM), was constructed in this study to address this problem. The model combined the 1D canal and ditch flow, the 1D soil water movement, the 2D groundwater movement, and the water interactions among these processes. It was calibrated and verified with two-year experimental data from Shahaoqu Sub-Irrigation Area in Hetao Irrigation District. The overall water balance error is 2.9% and 1.6% for the two years, respectively. The Nash–Sutcliffe efficiency coefficient (NSE) of water table depth and soil water content is 0.72 and 0.64 in the calibration year and 0.68 and 0.64 in the verification year. The results show good correspondence between the simulation and observation. It is practicable to apply the model in water movement research of irrigation districts.



2010 ◽  
Vol 14 (4) ◽  
pp. 613-626 ◽  
Author(s):  
S. Sinclair ◽  
G. G. S. Pegram

Abstract. In this paper we compare two independent soil moisture estimates over South Africa. The first estimate is a Soil Saturation Index (SSI) provided by automated real-time computations of the TOPKAPI hydrological model, adapted to run as a collection of independent 1 km cells with centres on a grid with a spatial resolution of 0.125°, at 3 h intervals. The second set of estimates is the remotely sensed ASCAT Surface Soil Moisture product, temporally filtered to yield a Soil Wetness Index (SWI). For the TOPKAPI cells, the rainfall forcing used is the TRMM 3B42RT product, while the evapotranspiration forcing is based on a modification of the FAO56 reference crop evapotranspiration (ET0). ET0 is computed using forecast fields of meteorological variables from the Unified Model (UM) runs done by the South African Weather Service (SAWS); the UM forecast fields were used, because reanalysis is not done by SAWS. To validate these ET0 estimates we compare them with those computed using observed meteorological data at a network of weather stations; they were found to be unbiased with acceptable scatter. Using the rainfall and evapotranspiration forcing data, the percentage saturation of the TOPKAPI soil store is computed as a Soil Saturation Index (SSI), for each of 6984 unconnected uncalibrated TOPKAPI cells at 3 h time-steps. These SSI estimates are then compared with the SWI estimates obtained from ASCAT. The comparisons indicate a good correspondence in the dynamic behaviour of SWI and SSI for a significant proportion of South Africa.



2010 ◽  
Vol 7 (1) ◽  
pp. 1103-1141 ◽  
Author(s):  
X. Fang ◽  
J. W. Pomeroy ◽  
C. J. Westbrook ◽  
X. Guo ◽  
A. G. Minke ◽  
...  

Abstract. The eastern Canadian Prairies are dominated by cropland, pasture, woodland and wetland areas. The region is characterized by many poor and internal drainage systems and large amounts of surface water storage. Consequently, basins here have proven challenging to hydrological model predictions which assume good drainage to stream channels. The Cold Regions Hydrological Modelling platform (CRHM) is an assembly system that can be used to set up physically based, flexible, object oriented models. CRHM was used to create a prairie hydrological model for the externally drained Smith Creek Research Basin (~400 km2), east-central Saskatchewan. Physically based modules were sequentially linked in CRHM to simulate snow processes, frozen soils, variable contributing area and wetland storage and runoff generation. Five "representative basins" (RBs) were used and each was divided into seven hydrological response units (HRUs): fallow, stubble, grassland, river channel, open water, woodland, and wetland as derived from a supervised classification of SPOT 5 imagery. Two types of modelling approaches calibrated and uncalibrated, were set up for 2007/08 and 2008/09 simulation periods. For the calibrated modelling, only the surface depression capacity of upland area was calibrated in the 2007/08 simulation period by comparing simulated and observed hydrographs; while other model parameters and all parameters in the uncalibrated modelling were estimated from field observations of soils and vegetation cover, SPOT 5 imagery, and analysis of drainage network and wetland GIS datasets as well as topographic map based and LiDAR DEMs. All the parameters except for the initial soil properties and antecedent wetland storage were kept the same in the 2008/09 simulation period. The model performance in predicting snowpack, soil moisture and streamflow was evaluated and comparisons were made between the calibrated and uncalibrated modelling for both simulation periods. Calibrated and uncalibrated predictions of snow accumulation were very similar and compared fairly well with the distributed field observations for the 2007/08 period with slightly poorer results for the 2008/09 period. Soil moisture content at a point during the early spring was adequately simulated and very comparable between calibrated and uncalibrated results for both simulation periods. The calibrated modelling had somewhat better performance in simulating spring streamflow in both simulation periods, whereas the uncalibrated modelling was still able to capture the streamflow hydrographs with good accuracy. This suggests that prediction of prairie basins without calibration is possible if sufficient data on meteorology, basin landcover and physiography are available.



2010 ◽  
Vol 7 (4) ◽  
pp. 6179-6205
Author(s):  
J. M. Schuurmans ◽  
F. C. van Geer ◽  
M. F. P. Bierkens

Abstract. This paper investigates whether the use of remotely sensed latent heat fluxes improves the accuracy of spatially-distributed soil moisture predictions by a hydrological model. By using real data we aim to show the potential and limitations in practice. We use (i) satellite data of both ASTER and MODIS for the same two days in the summer of 2006 that, in association with the Surface Energy Balance Algorithm for Land (SEBAL), provides us the spatial distribution of daily ETact and (ii) an operational physically based distributed (25 m×25 m) hydrological model of a small catchment (70 km2) in The Netherlands that simulates the water flow in both the unsaturated and saturated zone. Firstly, model outcomes of ETact are compared to the processed satellite data. Secondly, we perform data assimilation that updates the modelled soil moisture. We show that remotely sensed ETact is useful in hydrological modelling for two reasons. Firstly, in the procedure of model calibration: comparison of modeled and remotely sensed ETact together with the outcomes of our data assimilation procedure points out potential model errors (both conceptual and flux-related). Secondly, assimilation of remotely sensed ETact results in a realistic spatial adjustment of soil moisture, except for the area with forest and deep groundwater levels. As both ASTER and MODIS images were available for the same days, this study provides also an excellent opportunity to compare the worth of these two satellite sources. It is shown that, although ASTER provides much better insight in the spatial distribution of ETact due to its higher spatial resolution than MODIS, they appeared in this study just as useful.



2014 ◽  
Vol 18 (6) ◽  
pp. 2343-2357 ◽  
Author(s):  
N. Wanders ◽  
D. Karssenberg ◽  
A. de Roo ◽  
S. M. de Jong ◽  
M. F. P. Bierkens

Abstract. We evaluate the added value of assimilated remotely sensed soil moisture for the European Flood Awareness System (EFAS) and its potential to improve the prediction of the timing and height of the flood peak and low flows. EFAS is an operational flood forecasting system for Europe and uses a distributed hydrological model (LISFLOOD) for flood predictions with lead times of up to 10 days. For this study, satellite-derived soil moisture from ASCAT (Advanced SCATterometer), AMSR-E (Advanced Microwave Scanning Radiometer - Earth Observing System) and SMOS (Soil Moisture and Ocean Salinity) is assimilated into the LISFLOOD model for the Upper Danube Basin and results are compared to assimilation of discharge observations only. To assimilate soil moisture and discharge data into the hydrological model, an ensemble Kalman filter (EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satellite products, is included to ensure increased performance of the EnKF. For the validation, additional discharge observations not used in the EnKF are used as an independent validation data set. Our results show that the accuracy of flood forecasts is increased when more discharge observations are assimilated; the mean absolute error (MAE) of the ensemble mean is reduced by 35%. The additional inclusion of satellite data results in a further increase of the performance: forecasts of baseflows are better and the uncertainty in the overall discharge is reduced, shown by a 10% reduction in the MAE. In addition, floods are predicted with a higher accuracy and the continuous ranked probability score (CRPS) shows a performance increase of 5–10% on average, compared to assimilation of discharge only. When soil moisture data is used, the timing errors in the flood predictions are decreased especially for shorter lead times and imminent floods can be forecasted with more skill. The number of false flood alerts is reduced when more observational data is assimilated into the system. The added values of the satellite data is largest when these observations are assimilated in combination with distributed discharge observations. These results show the potential of remotely sensed soil moisture observations to improve near-real time flood forecasting in large catchments.



Sign in / Sign up

Export Citation Format

Share Document