scholarly journals Predictability of soil moisture and river flows over France for the spring season

2011 ◽  
Vol 8 (4) ◽  
pp. 7947-7986
Author(s):  
S. Singla ◽  
J.-P. Céron ◽  
E. Martin ◽  
F. Regimbeau ◽  
M. Déqué ◽  
...  

Abstract. Sources of spring predictability of the hydrological system over France were studied on a seasonal time scale over the 1960–2005 period. Two random sampling experiments were set up in order to test the relative importance of the land surface initial state and the atmospheric forcing. The experiments were based on the SAFRAN-ISBA-MODCOU hydrometeorological suite which computed soil moisture and river flow forecasts over a 8-km grid and more than 800 river-gauging stations. Results showed that the predictability of hydrological variables primarily depended on the seasonal atmospheric forcing (mostly temperature and total precipitation) over most plains, whereas it mainly depended on snow cover over high mountains. However, the Seine catchment area was an exception as the skill mainly came from the initial state of its large and complex aquifer. Seasonal meteorological hindcasts with the Météo-France ARPEGE climate model were then used to force the ISBA-MODCOU hydrological model and obtain seasonal hydrological forecasts from 1960 to 2005 for the entire March-April-May period. Scores from this seasonal hydrological forecasting suite could thus be compared with the random atmospheric experiment. Skill scores clearly showed the added value in seasonal meteorological forecasts in the north of France, contrary to the Mediterranean area where values worsened.

2012 ◽  
Vol 16 (1) ◽  
pp. 201-216 ◽  
Author(s):  
S. Singla ◽  
J.-P. Céron ◽  
E. Martin ◽  
F. Regimbeau ◽  
M. Déqué ◽  
...  

Abstract. Sources of spring predictability of the hydrological system over France were studied on a seasonal time scale over the 1960–2005 period. Two random sampling experiments were set up in order to test the relative importance of the land surface initial state and the atmospheric forcing. The experiments were based on the SAFRAN-ISBA-MODCOU hydrometeorological suite which computed soil moisture and river flow forecasts over a 8-km grid and more than 880 river-gauging stations. Results showed that the predictability of hydrological variables primarily depended on the seasonal atmospheric forcing (mostly temperature and total precipitation) over most plains, whereas it mainly depended on snow cover over high mountains. However, the Seine catchment area was an exception as the skill mainly came from the initial state of its large and complex aquifers. Seasonal meteorological hindcasts with the Météo-France ARPEGE climate model were then used to force the ISBA-MODCOU hydrological model and obtain seasonal hydrological forecasts from 1960 to 2005 for the entire March-April-May period. Scores from this seasonal hydrological forecasting suite could thus be compared with the random atmospheric experiment. Soil moisture and river flow skill scores clearly showed the added value in seasonal meteorological forecasts in the north of France, contrary to the Mediterranean area where values worsened.


2019 ◽  
Author(s):  
Alberto Martínez-de la Torre ◽  
Gonzalo Miguez-Macho

Abstract. Groundwater plays an important role in the terrestrial water cycle, interacting with the land surface via vertical fluxes through the water table and distributing water resources spatially via gravity-driven lateral transport. It is therefore essential to have a correct representation of groundwater processes in land surface models, as land-atmosphere coupling is a key factor in climate research. Here we use the Land Surface and Groundwater Model LEAFHYDRO to study the groundwater influence on soil moisture distribution and memory, and evapotranspiration (ET) fluxes in the Iberian Peninsula over a 10-year period. We validate our results with time series of observed water table depth from 623 stations covering different regions of the Iberian Peninsula, showing that the model produces a realistic water table, shallower in valleys and deeper under hilltops. We find patterns of shallow water table and strong groundwater–land surface coupling over extended interior semi-arid regions and river valleys. We show a strong seasonal and interannual persistence of the water table, which induces bimodal memory in the soil moisture fields; soil moisture remembers past wet conditions, buffering drought effects, and also past dry conditions, causing a delay in drought recovery. The effects on land-atmosphere fluxes are found to be significant, on average over the region, ET is 17.4 % higher when compared with a baseline simulation with LEAFHYDRO's groundwater scheme deactivated. The maximum ET increase occurs in summer (34.9 %; 0.54 mm day−1). The ET enhancement is larger over the drier southern basins, where ET is water limited (e.g. the Guadalquivir basin and the Mediterranean Segura basin), than in the northern Miño/Minho basin, where ET is more energy limited than water limited. In terms of river flow, we show how dry season baseflow is sustained by groundwater originating from accumulated recharge during the wet season, improving significantly on a free-drain approach, where baseflow comes from water draining through the top soil, resulting in rivers drying out in summer. Convective precipitation enhancement through local moisture recycling over the semiarid interior regions and summer cooling are potential implications of these groundwater effects on climate over the Iberian Peninsula. Fully coupled land surface and climate model simulations are needed to elucidate this question.


2019 ◽  
Vol 23 (12) ◽  
pp. 4909-4932 ◽  
Author(s):  
Alberto Martínez-de la Torre ◽  
Gonzalo Miguez-Macho

Abstract. Groundwater plays an important role in the terrestrial water cycle, interacting with the land surface via vertical fluxes through the water table and distributing water resources spatially via gravity-driven lateral transport. It is therefore essential to have a correct representation of groundwater processes in land surface models, as land–atmosphere coupling is a key factor in climate research. Here we use the LEAFHYDRO land surface and groundwater model to study the groundwater influence on soil moisture distribution and memory, and evapotranspiration (ET) fluxes in the Iberian Peninsula over a 10-year period. We validate our results with time series of observed water table depth from 623 stations covering different regions of the Iberian Peninsula, showing that the model produces a realistic water table, shallower in valleys and deeper under hilltops. We find patterns of shallow water table and strong groundwater–land surface coupling over extended interior semi-arid regions and river valleys. We show a strong seasonal and interannual persistence of the water table, which induces bimodal memory in the soil moisture fields; soil moisture “remembers” past wet conditions, buffering drought effects, and also past dry conditions, causing a delay in drought recovery. The effects on land–atmosphere fluxes are found to be significant: on average over the region, ET is 17.4 % higher when compared with a baseline simulation with LEAFHYDRO's groundwater scheme deactivated. The maximum ET increase occurs in summer (34.9 %; 0.54 mm d−1). The ET enhancement is larger over the drier southern basins, where ET is water limited (e.g. the Guadalquivir basin and the Mediterranean Segura basin), than in the northern Miño/Minho basin, where ET is more energy limited than water limited. In terms of river flow, we show how dry season baseflow is sustained by groundwater originating from accumulated recharge during the wet season, improving significantly on a free-drain approach, where baseflow comes from water draining through the top soil, resulting in rivers drying out in summer. Convective precipitation enhancement through local moisture recycling over the semi-arid interior regions and summer cooling are potential implications of these groundwater effects on climate over the Iberian Peninsula. Fully coupled land surface and climate model simulations are needed to elucidate this question.


2017 ◽  
Author(s):  
Clément Albergel ◽  
Simon Munier ◽  
Delphine Jennifer Leroux ◽  
Hélène Dewaele ◽  
David Fairbairn ◽  
...  

Abstract. In this study, a global Land Data Assimilation system (LDAS-Monde) is tested over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. LDAS-Monde is able to ingest information from satellite-derived surface Soil Moisture (SM) and Leaf Area Index (LAI) observations to constrain the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land surface model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (ISBA-CTRIP) continental hydrological system. It makes use of the CO2-responsive version of ISBA which models leaf-scale physiological processes and plant growth. Transfer of water and heat in the soil rely on a multilayer diffusion scheme. Surface SM and LAI observations are assimilated using a simplified extended Kalman filter (SEKF), which uses finite differences from perturbed simulations to generate flow-dependence between the observations and the model control variables. The latter include LAI and seven layers of soil (from 1 cm to 100 cm depth). A sensitivity test of the Jacobians over 2000–2012 exhibits effects related to both depth and season. It also suggests that observations of both LAI and surface SM have an impact on the different control variables. From the assimilation of surface SM, the LDAS is more effective in modifying soil-moisture from the top layers of soil as model sensitivity to surface SM decreases with depth and has almost no impact from 60 cm downwards. From the assimilation of LAI, a strong impact on LAI itself is found. The LAI assimilation impact is more pronounced in SM layers that contain the highest fraction of roots (from 10 cm to 60 cm). The assimilation is more efficient in summer and autumn than in winter and spring. Assimilation impact shows that the LDAS works well constraining the model to the observations and that stronger corrections are applied to LAI than to SM. The assimilation impact's evaluation is successfully carried out using (i) agricultural statistics over France, (ii) river discharge observations, (iii) satellite-derived estimates of land evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project and (iv) spatially gridded observations based estimates of up-scaled gross primary production and evapotranspiration from the FLUXNET network. Comparisons with those four datasets highlight neutral to highly positive improvement.


2021 ◽  
Vol 25 (1) ◽  
pp. 94-107
Author(s):  
M. C. A. Torbenson ◽  
D. W. Stahle ◽  
I. M. Howard ◽  
D. J. Burnette ◽  
D. Griffin ◽  
...  

Abstract Season-to-season persistence of soil moisture drought varies across North America. Such interseasonal autocorrelation can have modest skill in forecasting future conditions several months in advance. Because robust instrumental observations of precipitation span less than 100 years, the temporal stability of the relationship between seasonal moisture anomalies is uncertain. The North American Seasonal Precipitation Atlas (NASPA) is a gridded network of separately reconstructed cool-season (December–April) and warm-season (May–July) precipitation series and offers new insights on the intra-annual changes in drought for up to 2000 years. Here, the NASPA precipitation reconstructions are rescaled to represent the long-term soil moisture balance during the cool season and 3-month-long atmospheric moisture during the warm season. These rescaled seasonal reconstructions are then used to quantify the frequency, magnitude, and spatial extent of cool-season drought that was relieved or reversed during the following summer months. The adjusted seasonal reconstructions reproduce the general patterns of large-scale drought amelioration and termination in the instrumental record during the twentieth century and are used to estimate relief and reversals for the most skillfully reconstructed past 500 years. Subcontinental-to-continental-scale reversals of cool-season drought in the following warm season have been rare, but the reconstructions display periods prior to the instrumental data of increased reversal probabilities for the mid-Atlantic region and the U.S. Southwest. Drought relief at the continental scale may arise in part from macroscale ocean–atmosphere processes, whereas the smaller-scale regional reversals may reflect land surface feedbacks and stochastic variability.


2021 ◽  
Author(s):  
Markus Todt ◽  
Pier Luigi Vidale ◽  
Patrick C. McGuire ◽  
Omar V. Müller

<p>Capturing soil moisture-atmosphere feedbacks in a weather or climate model requires realistic simulation of various land surface processes. However, irrigation and other water management methods are still missing in most global climate models today, despite irrigated agriculture being the dominant land use in parts of Asia. In this study, we test the irrigation scheme available in the land model JULES (Joint UK Land Environment Simulator) by running land-only simulations over South and East Asia driven by WFDEI (WATCH Forcing Data ERA-Interim) forcing data. Irrigation in JULES is applied on a daily basis by replenishing soil moisture in the upper soil layers to field capacity, and we use a version of the irrigation scheme that extracts water for irrigation from groundwater and rivers, which physically limits the amount of irrigation that can be applied. We prescribe irrigation for C3 grasses in order to simulate the effects of agriculture, albeit retaining the simpler, widely used 5-PFT (plant functional type) configuration in JULES. Irrigation generally increases soil moisture and evapotranspiration, which results in increasing latent heat fluxes and decreasing sensible heat fluxes. Comparison with combined observational/machine-learning products for turbulent fluxes shows that while irrigation can reduce biases, other biases in JULES, unrelated to irrigation, are larger than improvements due to the inclusion of irrigation. Irrigation also affects water fluxes within the soil, e.g. runoff and drainage into the groundwater level, as well as soil moisture outside of the irrigation season. We find that the irrigation scheme, at least in the uncoupled land-atmosphere setting, can rapidly deplete groundwater to the point that river flow becomes the main source of irrigation (over the North China Plain and the Indus region) and can have the counterintuitive effect of decreasing annual average soil moisture (over the Ganges plain). Subsequently, we will explore the impact of irrigation on regional climate by conducting coupled land-atmosphere simulations.</p>


2018 ◽  
Vol 22 (10) ◽  
pp. 5463-5484 ◽  
Author(s):  
Zun Yin ◽  
Catherine Ottlé ◽  
Philippe Ciais ◽  
Matthieu Guimberteau ◽  
Xuhui Wang ◽  
...  

Abstract. Soil moisture is a key variable of land surface hydrology, and its correct representation in land surface models is crucial for local to global climate predictions. The errors may come from the model itself (structure and parameterization) but also from the meteorological forcing used. In order to separate the two source of errors, four atmospheric forcing datasets, GSWP3 (Global Soil Wetness Project Phase 3), PGF (Princeton Global meteorological Forcing), CRU-NCEP (Climatic Research Unit-National Center for Environmental Prediction), and WFDEI (WATCH Forcing Data methodology applied to ERA-Interim reanalysis data), were used to drive simulations in China by the land surface model ORCHIDEE-MICT(ORganizing Carbon and Hydrology in Dynamic EcosystEms: aMeliorated Interactions between Carbon and Temperature). Simulated soil moisture was compared with in situ and satellite datasets at different spatial and temporal scales in order to (1) estimate the ability of ORCHIDEE-MICT to represent soil moisture dynamics in China; (2) demonstrate the most suitable forcing dataset for further hydrological studies in Yangtze and Yellow River basins; and (3) understand the discrepancies of simulated soil moisture among simulations. Results showed that ORCHIDEE-MICT can simulate reasonable soil moisture dynamics in China, but the quality varies with forcing data. Simulated soil moisture driven by GSWP3 and WFDEI shows the best performance according to the root mean square error (RMSE) and correlation coefficient, respectively, suggesting that both GSWP3 and WFDEI are good choices for further hydrological studies in the two catchments. The mismatch between simulated and observed soil moisture is mainly explained by the bias of magnitude, suggesting that the parameterization in ORCHIDEE-MICT should be revised for further simulations in China. Underestimated soil moisture in the North China Plain demonstrates possible significant impacts of human activities like irrigation on soil moisture variation, which was not considered in our simulations. Finally, the discrepancies of meteorological variables and simulated soil moisture among the four simulations are analyzed. The result shows that the discrepancy of soil moisture is mainly explained by differences in precipitation frequency and air humidity rather than differences in precipitation amount.


2019 ◽  
Vol 15 (5) ◽  
pp. 1691-1713 ◽  
Author(s):  
Stephen J. Hunter ◽  
Alan M. Haywood ◽  
Aisling M. Dolan ◽  
Julia C. Tindall

Abstract. We present the UK's input into the Pliocene Model Intercomparison Project phase 2 (PlioMIP2) using the Hadley Centre Climate Model version 3 (HadCM3). The 400 ppm CO2 Pliocene experiment has a mean annual surface air temperature that is 2.9 ∘C warmer than the pre-industrial and a polar amplification of between 1.7 and 2.2 times the global mean warming. The Pliocene Research Interpretation and Synoptic Mapping (PRISM4) enhanced Pliocene palaeogeography accounts for a warming of 1.4 ∘C, whilst the CO2 increase from 280 to 400 ppm leads to a further 1.5 ∘C of warming. Climate sensitivity is 3.5 ∘C for the pre-industrial and 2.9 ∘C for the Pliocene. Precipitation change between the pre-industrial and Pliocene is complex, with geographic and land surface changes primarily modifying the geographical extent of mean annual precipitation. Sea ice fraction and areal extent are reduced during the Pliocene, particularly in the Southern Hemisphere, although they persist through summer in both hemispheres. The Pliocene palaeogeography drives a more intense Pacific and Atlantic meridional overturning circulation (AMOC). This intensification of AMOC is coincident with more widespread deep convection in the North Atlantic. We conclude by examining additional sensitivity experiments and confirm that the choice of total solar insolation (1361 vs. 1365 Wm−2) and orbital configuration (modern vs. 3.205 Ma) does not significantly influence the anomaly-type analysis in use by the Pliocene community.


2019 ◽  
Vol 116 (6) ◽  
pp. 1934-1939 ◽  
Author(s):  
Michael Bevis ◽  
Christopher Harig ◽  
Shfaqat A. Khan ◽  
Abel Brown ◽  
Frederik J. Simons ◽  
...  

From early 2003 to mid-2013, the total mass of ice in Greenland declined at a progressively increasing rate. In mid-2013, an abrupt reversal occurred, and very little net ice loss occurred in the next 12–18 months. Gravity Recovery and Climate Experiment (GRACE) and global positioning system (GPS) observations reveal that the spatial patterns of the sustained acceleration and the abrupt deceleration in mass loss are similar. The strongest accelerations tracked the phase of the North Atlantic Oscillation (NAO). The negative phase of the NAO enhances summertime warming and insolation while reducing snowfall, especially in west Greenland, driving surface mass balance (SMB) more negative, as illustrated using the regional climate model MAR. The spatial pattern of accelerating mass changes reflects the geography of NAO-driven shifts in atmospheric forcing and the ice sheet’s sensitivity to that forcing. We infer that southwest Greenland will become a major future contributor to sea level rise.


2019 ◽  
Vol 11 (6) ◽  
pp. 735 ◽  
Author(s):  
Moustapha Tall ◽  
Clément Albergel ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
Françoise Guichard ◽  
...  

This study focuses on the ability of the global Land Data Assimilation System, LDAS-Monde, to improve the representation of land surface variables (LSVs) over Burkina-Faso through the joint assimilation of satellite derived surface soil moisture (SSM) and leaf area index (LAI) from January 2001 to June 2018. The LDAS-Monde offline system is forced by the latest European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis ERA5 as well as ERA-Interim former reanalysis, leading to reanalyses of LSVs at 0.25° × 0.25° and 0.50° × 0.50° spatial resolution, respectively. Within LDAS-Monde, SSM and LAI observations from the Copernicus Global Land Service (CGLS) are assimilated with a simplified extended Kalman filter (SEKF) using the CO2-responsive version of the ISBA (Interactions between Soil, Biosphere, and Atmosphere) land surface model (LSM). First, it is shown that ERA5 better represents precipitation and incoming solar radiation than ERA-Interim former reanalysis from ECMWF based on in situ data. Results of four experiments are then compared: Open-loop simulation (i.e., no assimilation) and analysis (i.e., joint assimilation of SSM and LAI) forced by either ERA5 or ERA-Interim. After jointly assimilating SSM and LAI, it is noticed that the assimilation is able to impact soil moisture in the first top soil layers (the first 20 cm), and also in deeper soil layers (from 20 cm to 60 cm and below), as reflected by the structure of the SEKF Jacobians. The added value of using ERA5 reanalysis over ERA-Interim when used in LDAS-Monde is highlighted. The assimilation is able to improve the simulation of both SSM and LAI: The analyses add skill to both configurations, indicating the healthy behavior of LDAS-Monde. For LAI in particular, the southern region of the domain (dominated by a Sudan-Guinean climate) highlights a strong impact of the assimilation compared to the other two sub-regions of Burkina-Faso (dominated by Sahelian and Sudan-Sahelian climates). In the southern part of the domain, differences between the model and the observations are the largest, prior to any assimilation. These differences are linked to the model failing to represent the behavior of some specific vegetation species, which are known to put on leaves before the first rains of the season. The LDAS-Monde analysis is very efficient at compensating for this model weakness. Evapotranspiration estimates from the Global Land Evaporation Amsterdam Model (GLEAM) project as well as upscaled carbon uptake from the FLUXCOM project and sun-induced fluorescence from the Global Ozone Monitoring Experiment-2 (GOME-2) are used in the evaluation process, again demonstrating improvements in the representation of evapotranspiration and gross primary production after assimilation.


Sign in / Sign up

Export Citation Format

Share Document