Using digital soil hydraulic maps to simulate water balance at the regional scale (southern Portugal) - impact of spatial resolution and modelling approach

2021 ◽  
Author(s):  
Ana R. Oliveira ◽  
Ana Horta ◽  
Tiago Ramos

<p>Modelling of soil physical, chemical, and biological processes is critical to improve the understanding of soil functions, the effect of agricultural practices on soil degradation, and appropriate soil management strategies. However, the use of such tools at the regional scale is largely limited by the lack of accurate mapping of soil texture and soil hydraulic properties (SHP). To overcome this limitation, SHP digital maps were obtained using two modelling approaches. One used a national harmonized soil texture database and geostatistical simulation to create soil texture maps which were further used as input data to derive SHP maps using local pedotransfer functions (PTFs). The other approach used SHP maps produced by Tóth et al (2017) using soil texture from the product SoilsGrids (Hengl et al, 2017). The SHP maps from both approaches were produced at two spatial resolutions: 250 m and 1000 m. This study aims to evaluate the usefulness of such SHP maps to simulate soil water dynamics and biomass growth at the regional scale using the MOHID-Land model. This model describes the movement of water in the porous medium based on mass and momentum conservation equations that are computed in a 3D grid domain using a finite volume approach. Crop development is simulated using a modified version of the EPIC model. The SHP maps produced using the two modelling approaches and considering two spatial resolutions (250 and 1000 m) were used as inputs for the hydraulic characteristics of soils. Simulations were compared for an irrigation area (Roxo Irrigation District), located in southern Portugal. Results revealed the differences in the components of the soil water balance, with soil inputs from local data being able to better portray landscape heterogeneity.</p>

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 33
Author(s):  
Vilim Filipović ◽  
Jasmina Defterdarović ◽  
Vedran Krevh ◽  
Lana Filipović ◽  
Gabrijel Ondrašek ◽  
...  

Erosion has been reported as one of the top degradation processes that negatively affect agricultural soils. The study objective was to identify hydropedological factors controlling soil water dynamics in erosion-affected hillslope vineyard soils. The hydropedological study was conducted at identically-managed Jastrebarsko (location I), and Jazbina (II) and (III) sites with Stagnosol soils. Soil Hydraulic Properties (SHP) were estimated on intact soil cores using Evaporation and WP4C methods; soil hydraulic functions were fitted using HYPROP-FIT software. For Apg and Bg/Btg horizons, uni- and bimodal soil hydraulic models could be well fitted to data; although, the bimodal model performed better in particular cases where data indicated non-uniform pore size distribution. With these SHP estimations, a one-year (2020) water flow scenario was simulated using HYDRUS-1D to compare water balance results obtained with uni- and bimodal hydraulic functions. Simulation results revealed relatively similar flux distribution at each hillslope position between the water balance components infiltration, surface runoff, and drainage. However, at the bottom profile at Jastrebarsko, bimodality of the hydraulic functions led to increased drainage. Soil water storage was reduced, and the vertical movement increased due to modified soil water retention curve shapes. Adequate parameterization of SHP is required to capture the hydropedological response of heterogenous erosion-affected soil systems.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 692
Author(s):  
Boyu Mi ◽  
Haorui Chen ◽  
Shaoli Wang ◽  
Yinlong Jin ◽  
Jiangdong Jia ◽  
...  

The water movement research in irrigation districts is important for food production. Many hydrological models have been proposed to simulate the water movement on the regional scale, yet few of them have comprehensively considered processes in the irrigation districts. A novel physically based distributed model, the Irrigation Districts Model (IDM), was constructed in this study to address this problem. The model combined the 1D canal and ditch flow, the 1D soil water movement, the 2D groundwater movement, and the water interactions among these processes. It was calibrated and verified with two-year experimental data from Shahaoqu Sub-Irrigation Area in Hetao Irrigation District. The overall water balance error is 2.9% and 1.6% for the two years, respectively. The Nash–Sutcliffe efficiency coefficient (NSE) of water table depth and soil water content is 0.72 and 0.64 in the calibration year and 0.68 and 0.64 in the verification year. The results show good correspondence between the simulation and observation. It is practicable to apply the model in water movement research of irrigation districts.


2018 ◽  
Vol 66 (2) ◽  
pp. 232-245 ◽  
Author(s):  
Vakhtang Shelia ◽  
Jirka Šimůnek ◽  
Ken Boote ◽  
Gerrit Hoogenbooom

AbstractAccurate estimation of the soil water balance of the soil-plant-atmosphere system is key to determining the availability of water resources and their optimal management. Evapotranspiration and leaching are the main sinks of water from the system affecting soil water status and hence crop yield. The accuracy of soil water content and evapotranspiration simulations affects crop yield simulations as well. DSSAT is a suite of field-scale, process-based crop models to simulate crop growth and development. A “tipping bucket” water balance approach is currently used in DSSAT for soil hydrologic and water redistribution processes. By comparison, HYDRUS-1D is a hydrological model to simulate water flow in soils using numerical solutions of the Richards equation, but its approach to crop-related process modeling is rather limited. Both DSSAT and HYDRUS-1D have been widely used and tested in their separate areas of use. The objectives of our study were: (1) to couple HYDRUS-1D with DSSAT to simulate soil water dynamics, crop growth and yield, (2) to evaluate the coupled model using field experimental datasets distributed with DSSAT for different environments, and (3) to compare HYDRUS-1D simulations with those of the tipping bucket approach using the same datasets. Modularity in the software design of both DSSAT and HYDRUS-1D made it easy to couple the two models. The pairing provided the DSSAT interface an ability to use both the tipping bucket and HYDRUS-1D simulation approaches. The two approaches were evaluated in terms of their ability to estimate the soil water balance, especially soil water contents and evapotranspiration rates. Values of thedindex for volumetric water contents were 0.9 and 0.8 for the original and coupled models, respectively. Comparisons of simulations for the pod mass for four soybean and four peanut treatments showed relatively highdindex values for both models (0.94–0.99).


Author(s):  
José E. F. de Morais ◽  
Thieres G. F. da Silva ◽  
Maria G. de Queiroz ◽  
Gherman G. L. de Araújo ◽  
Magna S. B. Moura ◽  
...  

ABSTRACT The knowledge on soil water dynamics is the basis of crop water management. The soil water balance (SWB) method is used for this purpose. However, its application in cactus may lead to misinterpretation in water efficiency analysis, since it does not consider the amount of water retained in the plant (WRP). This study aimed to evaluate SWB applicability, hydrodynamic changes and water efficiency of forage cactus clones under irrigation. The clones ‘Orelha de Elefante Mexicana’ (OEM), ‘IPA Sertânia’ (IPA) and ‘Miúda’ (MIU) were submitted to irrigation depths (2.5, 5.0 and 7.5 mm) and frequencies (7, 14 and 28 days), in Serra Talhada, PE, Brazil, between March 2012 and August 2013. The SWB was applied, by adding the WRP in the estimate of the effective actual evapotranspiration (ETrEF). The water efficiency indicators were calculated. The actual evapotranspiration on SWB (ETrSWB) overestimated ETrEF and, like other SWB components, it was affected by the factors irrigation depth, frequency and clone. The clone OEM is the most efficient, due to the use of the WRP, while MIU leads to highest gross economic returns for sale of cladodes as seed. As conclusion, the application of the soil water balance method in areas cultivated with cactus species must be accompanied by WRP.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1858 ◽  
Author(s):  
Jesús María Domínguez-Niño ◽  
Gerard Arbat ◽  
Iael Raij-Hoffman ◽  
Isaya Kisekka ◽  
Joan Girona ◽  
...  

Although surface drip irrigation allows an efficient use of water in agriculture, the heterogeneous distribution of soil water complicates its optimal usage. Mathematical models can be used to simulate the dynamics of water in the soil below a dripper and promote: a better understanding, and optimization, of the design of drip irrigation systems, their improved management and their monitoring with soil moisture sensors. The aim of this paper was to find the most appropriate configuration of HYDRUS-3D for simulating the soil water dynamics in a drip-irrigated orchard. Special emphasis was placed on the source of the soil hydraulic parameters. Simulations parameterized using the Rosetta approach were therefore compared with others parameterized using that of HYPROP + WP4C. The simulations were validated on a seasonal scale, against measurements made using a neutron probe, and on the time course of several days, against tensiometers. The results showed that the best agreement with soil moisture measurements was achieved with simulations parameterized from HYPROP + WP4C. It further improved when the shape parameter n was empirically calibrated from a subset of neutron probe measurements. The fit of the simulations with measurements was best at positions near the dripper and worsened at positions outside its wetting pattern and at depths of 80 cm or more.


2003 ◽  
Vol 30 (6) ◽  
pp. 699 ◽  
Author(s):  
Eric Lebon ◽  
Vincent Dumas ◽  
Philippe Pieri ◽  
Hans R. Schultz

A geometrical canopy model describing radiation absorption (Riou et al. 1989, Agronomie 9, 441–450) and partitioning between grapevines (Vitis vinifera L.) and soil was coupled to a soil water balance routine describing a bilinear change in relative transpiration rate as a function of the fraction of soil transpirable water (FTSW). The model was amended to account for changes in soil evaporation after precipitation events and subsequent dry-down of the top soil layer. It was tested on two experimental vineyards in the Alsace region, France, varying in soil type, water-holding capacity and rooting depth. Simulations were run over four seasons (1992–1993, 1995–1996) and compared with measurements of FTSW conducted with a neutron probe. For three out of four years, the model simulated the dynamics in seasonal soil water balance adequately. For the 1996 season soil water content was overestimated for one vineyard and underestimated for the other. Sensitivity analyses revealed that the model responded strongly to changes in canopy parameters, and that soil evaporation was particularly sensitive to water storage of the top soil layer after rainfall. We found a close relationship between field-average soil water storage and pre-dawn water potential, a relationship which could be used to couple physiological models of growth and / or photosynthesis to the soil water dynamics.


Irriga ◽  
2018 ◽  
Vol 23 (4) ◽  
pp. 622-636
Author(s):  
Marta Rodrigues da Rocha ◽  
Reimar Carlesso ◽  
Mirta Teresinha Petry ◽  
Laudenir Juciê Basso ◽  
Sônia Thais Menegaz

DINÂMICA DA ÁGUA NOS RESÍDUOS CULTURAIS EM UM SISTEMA IRRIGADO     MARTA RODRIGUES DA ROCHA1; REIMAR CARLESSO2; MIRTA TERESINHA PETRY3; LAUDENIR JUCIÊ BASSO4 E SÔNIA THAIS MENEGAZ5   1Doutora em Engenharia Agrícola, Programa de Pós-Graduação em Engenharia Agrícola (PPGEA), Universidade Federal de Santa Maria (UFSM), Av. Roraima, n°1000 – Camobi, Santa Maria/ RS/ Brasil, CEP: 97105-900, [email protected]; 2Universidade Federal de Santa Maria, Departamento de Engenharia Rural, Av. Roraima, n°1000 – Camobi, Santa Maria/ RS/ Brasil, CEP: 97105-900, Santa Maria, RS. [email protected]; 3 Universidade Federal de Santa Maria, Departamento de Engenharia Rural, Av. Roraima, n°1000 – Camobi, Santa Maria/ RS/ Brasil, CEP: 97105-900, Santa Maria, RS, UFSM, [email protected];  4Mestrando do PPGEA, Universidade Federal de Santa Maria (UFSM), Av. Roraima, n°1000 – Camobi, Santa Maria/ RS/ Brasil, CEP: 97105-900, [email protected];  5Mestranda em Ciência do Solo e Qualidade da Água, Universidade de Minnesota, Minneapolis, MN 55455, Saint Paul/ Minnesota/ EUA, [email protected].     1 RESUMO   A redução da evaporação e maior conservação de água no solo são apontados como as vantagens da manutenção dos resíduos na superfície do solo, no Sistema Plantio Direto. Quantificar com acurácia a água conservada no solo é necessário, uma vez que, os efeitos benéficos são controversos. Por outro lado, uma intensa camada de resíduos pode reter grande parte da água de irrigação ou da chuva quando as lâminas forem pequenas, além de dificultar as operações de semeadura. Assim, o objetivo desse trabalho foi quantificar a interceptação de água de irrigação pelos resíduos culturais e o seu efeito nos componentes do balanço hídrico do solo. Para tanto, foi conduzido um experimento na Universidade Federal de Santa Maria, durante 60 dias, nos anos de 2013 e 2014, sob uma cobertura móvel, em parcelas de 9 m2. Utilizou-se um delineamento bi-fatorial, com três repetições, onde o fator A foi constituído de três níveis de cobertura do solo: 0; 2 e 4 t ha-1 de resíduos de aveia preta. O fator B foi constituído de três lâminas de irrigação (menor, intermediária e maior). Após cada evento de irrigação, uma amostra de 0,09 m2 de resíduos vegetais era coletada e pesada, em intervalos de 0; 3; 6 e 24 horas após a irrigação, a fim de medir a água retida pelos resíduos. O conteúdo de água no solo foi monitorado em cada unidade experimental, até a profundidade de 85 cm, utilizando-se um conjunto de sensores FDR (Reflectometria de domínio de frequência). O balanço hídrico do solo foi determinado pela relação entre a lâmina aplicada, subtraída da lâmina infiltrada, a água retida pelo resíduo vegetal e da lâmina evaporada, após cada evento de irrigação. O uso de cobertura sobre o solo é uma maneira eficiente para reduzir a Es, entretanto a água interceptada pelos resíduos vegetais é evaporada, e esta perda deve ser considerada, especialmente quando se trata de pequenas e frequentes lâminas de irrigação por aspersão.   Palavras-chave: Balanço Hídrico do Solo, Evaporação, Interceptação.     ROCHA, M. R.; CARLESSO, R.; PETRY, M. T.; BASSO, L. J.; MENEGAZ, S. T. WATER DYNAMICS IN AN IRRIGATED SYSTEM’S CROP RESIDUES 2 ABSTRACT   Accurately quantifying soil water storage is necessary, since the beneficial effects of a thick mulch layer are controversial. Nevertheless, an intense layer of mulch can retain much of the small irrigation depths or precipitation, as well as hamper sowing operations. The intent of this paper is to quantify  water interception by crop residues and the effect in the water balance components in the soil. The experiment was conducted in the Federal University of Santa Maria, during 60 days, in 2013 and 2014, under rainout shelter, in 9 m2 plots. Bi- factorial delineation was used, with three repetitions, where factor A was constituted of three levels of soil mulching: 0; 2 and 4 t ha-1 of dry black oat residues. Factor B was constituted of three irrigation depths. After every irrigation event, a sample of 0.09 m² of crop residues was collected and weighted, in a time interval of 0; 3; 6 and 24 hours after irrigation, in order to measure the residues retained water. Soil water content was monitored in each experimental unit, to the depth of 85 cm, using a set of FDR sensors (Frequency domain reflectometers). The soil water balance was determined by the relation between irrigation depth applied, subtracted from the infiltrated irrigation depth, the water retained by the residues and the evaporated irrigation depth, after every irrigation event.   Keywords: Water balance, Evaporated, Interception.


Soil Research ◽  
2002 ◽  
Vol 40 (2) ◽  
pp. 221 ◽  
Author(s):  
R. D. Connolly ◽  
M. Bell ◽  
N. Huth ◽  
D. M. Freebairn ◽  
G. Thomas

We test APSIM-SWIM's ability to simulate infiltration and interactions between the soil water balance and grain crop growth using soil hydraulic properties derived from independent, point measurements. APSIMSWIM is a continuous soil-crop model that simulates infiltration, surface crusting, and soil condition in more detail than most other soil-crop models. Runoff, soil water, and crop growth information measured at sites in southern Queensland was used to test the model. Parameter values were derived directly from soil hydraulic properties measured using rainfall simulators, disc permeameters and ponded rings, and pressure plate apparatus. In general, APSIM-SWIM simulated infiltration, runoff, soil water and the water balance, and yield as accurately and reliably as other soil crop models, indicating the model is suitable for evaluating effects of infiltration and soil-water relations on crop growth. Increased model detail did not hinder application, instead improving parameter transferability and utility, but improved methods of characterising crusting, soil hydraulic conductivity, and macroporosity under field conditions would improve ease of application, prediction accuracy, and reliability of the model. Model utility and accuracy would benefit from improved representation of temporal variation in soil condition, including effects of tillage and consolidation on soil condition and bypass flow in cracks. infiltration, crop models, APSIM, water balance, soil structure.


2010 ◽  
Vol 14 (10) ◽  
pp. 2099-2120 ◽  
Author(s):  
J. P. Kochendorfer ◽  
J. A. Ramírez

Abstract. The statistical-dynamical annual water balance model of Eagleson (1978) is a pioneering work in the analysis of climate, soil and vegetation interactions. This paper describes several enhancements and modifications to the model that improve its physical realism at the expense of its mathematical elegance and analytical tractability. In particular, the analytical solutions for the root zone fluxes are re-derived using separate potential rates of transpiration and bare-soil evaporation. Those potential rates, along with the rate of evaporation from canopy interception, are calculated using the two-component Shuttleworth-Wallace (1985) canopy model. In addition, the soil column is divided into two layers, with the upper layer representing the dynamic root zone. The resulting ability to account for changes in root-zone water storage allows for implementation at the monthly timescale. This new version of the Eagleson model is coined the Statistical-Dynamical Ecohydrology Model (SDEM). The ability of the SDEM to capture the seasonal dynamics of the local-scale soil-water balance is demonstrated for two grassland sites in the US Great Plains. Sensitivity of the results to variations in peak green leaf area index (LAI) suggests that the mean peak green LAI is determined by some minimum in root zone soil moisture during the growing season. That minimum appears to be close to the soil matric potential at which the dominant grass species begins to experience water stress and well above the wilting point, thereby suggesting an ecological optimality hypothesis in which the need to avoid water-stress-induced leaf abscission is balanced by the maximization of carbon assimilation (and associated transpiration). Finally, analysis of the sensitivity of model-determined peak green LAI to soil texture shows that the coupled model is able to reproduce the so-called "inverse texture effect", which consists of the observation that natural vegetation in dry climates tends to be most productive in sandier soils despite their lower water holding capacity. Although the determination of LAI based on complete or near-complete utilization of soil moisture is not a new approach in ecohydrology, this paper demonstrates its use for the first time with a new monthly statistical-dynamical model of the water balance. Accordingly, the SDEM provides a new framework for studying the controls of soil texture and climate on vegetation density and evapotranspiration.


Sign in / Sign up

Export Citation Format

Share Document