scholarly journals 3D TEXTURED MODELLING OF BOTH EXTERIOR AND INTERIOR OF KOREAN STYLED ARCHITECTURES

Author(s):  
J.-D. Lee ◽  
K.-J. Bhang ◽  
W. Schuhr

This paper describes 3D modelling procedure of two Korean styled architectures which were performed through a series of processing from data acquired with the terrestrial laser scanner. These two case projects illustate the use of terrestrial laser scanner as a digital documentation tool for management, conservation and restoration of the cultural assets. We showed an approach to automate reconstruction of both the outside and inside models of a building from laser scanning data. Laser scanning technology is much more efficient than existing photogrammetry in measuring shape and constructing spatial database for preservation and restoration of cultural assets as well as for deformation monitoring and safety diagnosis of structures.

Author(s):  
Jovana Radović

Within the last years terrestrial and airborne laser scanning has become a powerful technique for fast and efficient three-dimensional data acquisition of different kinds of objects. Airborne laser system (LiDAR) collects accurate georeferenced data of extremely large areas very quickly while the terrestrial laser scanner produces dense and geometrically accurate data. The combination of these two segments of laser scanning provides different areas of application. One of the applications is in the process of reconstruction of objects. Objects recorded with laser scanning technology and transferred into the final model represent the basis for building an object as it was original. In this paper, there will be shown two case studies based on usage of airborne and terrestrial laser scanning and processing of the data collected by them.


Author(s):  
Žymantas Gražulis ◽  
Boleslovas Krikštaponis ◽  
Algirdas Neseckas ◽  
Darius Popovas ◽  
Raimundas Putrimas ◽  
...  

The horizontal deformation analysis of high-rise buildings, quite often is complicated because buildings like chimneys, towers and etc, have complex and asymmetric shapes, consequently there is not always the possibility to apply the method of single points motion analysis. Furthermore, the horizontal deformation analysis is complicated using standard measurement methods like measurements with electronic total stations or optical theodolites. In such case the terrestrial laser scanner could be superior to traditional measurements. However, the terrestrial laser scanner still not widely used to survey building horizontal deformations using high precision measurements. The main aim of this work is to determine the suitability to measure deflections of buildings from the vertical using terrestrial laser scanners and to investigate point cloud data processing. Measurements of horizontal deformation were carried out using the over ground laser scanner and electronic total station. Horizontal deformations of chimneys of thermal power plants were investigated using corresponding methods. Deformation indicators and evaluated measurement accuracies between different methods were compared. Data analysis of terrestrial laser scanning is more complex, time consuming and requires sophisticated hardware resources in comparison with the traditional methods, however results are much more detailed and informative.


2019 ◽  
Vol 284 ◽  
pp. 08007
Author(s):  
Joanna A. Pawłowicz

3D terrestrial laser scanning (TLS) is a modern measurement technique which enables to obtain a large amount of data in short time. The gathered data is very detailed, thus the scope of its use is vast. Therefore scanners other measurement devices which results in considerable acceleration of stock-taking work. This approach enables to prepare a documentation of a building or to make an assessment of its technical condition using only a 3D cloud of points. Additionally, flexibility of data and advanced computer programmes make it possible to use such data in many sectors, not only in the building trade. The paper shows the issue of using a 3D terrestrial laser scanner ant the TLS (Terrestrial Laser Scanning) technique for identification and measurement of damaged elements on the example of a historical sacral building.


2019 ◽  
Vol 13 (2) ◽  
pp. 105-134 ◽  
Author(s):  
Mohammad Omidalizarandi ◽  
Boris Kargoll ◽  
Jens-André Paffenholz ◽  
Ingo Neumann

Abstract In the last two decades, the integration of a terrestrial laser scanner (TLS) and digital photogrammetry, besides other sensors integration, has received considerable attention for deformation monitoring of natural or man-made structures. Typically, a TLS is used for an area-based deformation analysis. A high-resolution digital camera may be attached on top of the TLS to increase the accuracy and completeness of deformation analysis by optimally combining points or line features extracted both from three-dimensional (3D) point clouds and captured images at different epochs of time. For this purpose, the external calibration parameters between the TLS and digital camera needs to be determined precisely. The camera calibration and internal TLS calibration are commonly carried out in advance in the laboratory environments. The focus of this research is to highly accurately and robustly estimate the external calibration parameters between the fused sensors using signalised target points. The observables are the image measurements, the 3D point clouds, and the horizontal angle reading of a TLS. In addition, laser tracker observations are used for the purpose of validation. The functional models are determined based on the space resection in photogrammetry using the collinearity condition equations, the 3D Helmert transformation and the constraint equation, which are solved in a rigorous bundle adjustment procedure. Three different adjustment procedures are developed and implemented: (1) an expectation maximization (EM) algorithm to solve a Gauss-Helmert model (GHM) with grouped t-distributed random deviations, (2) a novel EM algorithm to solve a corresponding quasi-Gauss-Markov model (qGMM) with t-distributed pseudo-misclosures, and (3) a classical least-squares procedure to solve the GHM with variance components and outlier removal. The comparison of the results demonstrates the precise, reliable, accurate and robust estimation of the parameters in particular by the second and third procedures in comparison to the first one. In addition, the results show that the second procedure is computationally more efficient than the other two.


2020 ◽  
Author(s):  
Giuseppe Casula ◽  
Silvana Fais ◽  
Francesco Cuccuru ◽  
Maria Giovanna Bianchi ◽  
Paola Ligas

<p>A multi-technique high resolution 3D modelling is described here aimed at the investigation of the state of conservation of carbonate columns of the 1000 BC ancient church of Buon Camino located in the homonymous district of the town of Cagliari (Italy).</p><p>The integrated application of different Non-Destructive Testing (NDT) diagnostic methods is of paramount importance to locate damaged parts of the building material of artefacts of historical buildings and to plan their restoration.</p><p>In this study a multi-step procedure was applied starting with a high resolution 3D modelling performed with the aid of Structure from Motion (SfM) Photogrammetry and Terrestrial Laser Scanner (TLS) methodologies. For this delicate task we operated simultaneously a Nikon D-5300 digital Reflex 24.2 Mega pixel Camera and a Leica HDS-6200 Terrestrial Laser Scanner. Subsequently, starting from the information detected with the above methods deeper material diagnostics was performed by means of high resolution 3D ultrasonic tomography aimed at the capillary definition of the elastic properties in the inner parts of the building materials. Measurements of longitudinal wave velocity from ultrasonic data were performed using the transmission method, namely two piezoelectric transducers coupled on the opposite sides of the investigated columns. The ultrasonic data acquisition was planned designing an optimal survey and providing a very good spatial coverage of the investigated columns. The columns were then criss-crossed by a large number of ray paths forming a dense 3D net. The SIRT (Simultaneous Iterative Reconstruction Tomography) algorithm was used to produce the 3D rendering of the velocity distribution inside the investigated columns. With this method the damaged parts were located and it was possible to distinguish them from the unaltered areas. The information on the superficial material conditions obtained by SfM and TLS techniques were compared and integrated with the information of the inner materials obtained by 3D ultrasonic tomography.</p><p>The results of the above non invasive geophysical techniques have been interpreted in the light of the different textural and petrophysical features of the study carbonate building materials. The study of the main textural features, such as the relationship between bioclasts, carbonate matrix, or that of the cement and petrophysical characteristics such as the nature and distribution of porosity were found to be of fundamental importance in the interpretation of the geophysical data (e.g. TLS reflectance and longitudinal acoustic wave propagation). Therefore a detailed analysis of the textures and pore microstructure were carried out from petrographic thin-sections in Optical and Scanning Electron Microscopy (OM/SEM). The final result of our multi-step-technique integrated methodology is a sophisticated 3D model with a high resolution 3D image representing the internal and external parts of the investigated columns in order to account for their static load resistance and possibly plan their conservation and restoration. The described procedure can also be applied to other cases in which a diagnosis is needed of the state of conservation of the variously shaped, layered-stones and composed artefacts typical of ancient historical buildings.</p><p>Key words: 3D Modelling, 3D Ultrasonic Tomography, Terrestrial Laser Scanner, SfM Photogrammetry, Non-Destructive Testing, Diagnostic, Ancient Columns, Stones</p>


2011 ◽  
Vol 5 (1) ◽  
pp. 135-138 ◽  
Author(s):  
S. Kaasalainen ◽  
H. Kaartinen ◽  
A. Kukko ◽  
K. Anttila ◽  
A. Krooks

Abstract. We present a snowmobile-based mobile mapping system and its first application to snow cover roughness and change detection measurement. The ROAMER mobile mapping system, constructed at the Finnish Geodetic Institute, consists of the positioning and navigating systems, a terrestrial laser scanner, and the carrying platform (a snowmobile sledge in this application). We demonstrate the applicability of the instrument to snow cover roughness profiling and change detection by presenting preliminary results from a mobile laser scanning (MLS) campaign. The results show the potential of MLS for fast and efficient snow profiling from large areas in a millimetre scale.


2011 ◽  
Vol 90-93 ◽  
pp. 2811-2817 ◽  
Author(s):  
Bao Xing Zhou ◽  
Jian Ping Yue ◽  
Ke Yong Jia

Deformation monitoring is typically undertaken using spare, point-wise geodetic surveying techniques, such as total station or GPS. Deformation monitoring using terrestrial laser scanning is gaining considerable attention mainly due to the high spatial resolution of the acquired data. It can provide dense 3D information of the surface of an object. A disadvantage of the technique may be the difficulty to assess some fixed benchmarks on the surface of the deforming area, unless they are special targets that can be recognised by the accompanying software. To solve this problem, a new automatic deformation acquisition method based on nurbs surface was presented. The paper discusses methods of nurbs surface modelling implemented for deformation monitoring and approaches used to measure the deformation from surfaces. Finally, applications involving the use of laser scanning in bridge are presented.


2018 ◽  
Vol 66 ◽  
pp. 01019
Author(s):  
Janusz P. Kogut ◽  
Ievgen Tymoshenko

Terrestrial laser scanning helps us to detect unstable subsurface behaviour, assessing the slope stability and potential landslide failure modes. If the slopes are regularly observed, the risk of slope movement and subsequent consequences may be considerably reduced. This allows for optimum land use conditions that are economically justified. Landslides in the Carpathian flysch have a peculiar susceptibility to activation due to the region’s geological structure. This work addresses the problem of monitoring and analysing the effects of landslides associated with the operation of routes (roads and railway lines) running through the slopes of the Carpathian flysch. The terrestrial laser scanner enables site remote sensing in a simple and automated manner. Regular measurements with multiple scanner positions may be used for long term slope monitoring. A detailed geological structural model allows for risk assessment with regards to failure modes, and it allows for a slope stability assessment. The model, along with the substrate parameters, introduced into the Finite Element Analysis package enables an analysis of the effects of landslide susceptibility and the displacements of the terrain surface in time, as well as due to different loading cases.


2013 ◽  
Vol 325-326 ◽  
pp. 1787-1791 ◽  
Author(s):  
Hang Chen ◽  
Zhang Ying ◽  
Zhen Feng Shao ◽  
Zhi Qiang Du

This paper analyzes the characteristics of terrestrial laser scanning technology and it's advantages of surveying and mapping application in mining area. Through the analysis of the specific topographical features of mining area, we design a new method in measurement based on the terrestrial laser scanning technology, and probe into the methods of 3D reconstruction and calculation of extraction. Experiments show that the proposed method can improve the efficiency of surveying and mapping in mining area , the 3D model can be used to monitor the extraction of mining area.


Sign in / Sign up

Export Citation Format

Share Document