scholarly journals THE EFFECTS OF BUILT-UP AND GREEN AREAS ON THE LAND SURFACE TEMPERATURE OF THE KUALA LUMPUR CITY

Author(s):  
N. A. Isa ◽  
W. M. N. Wan Mohd ◽  
S. A. Salleh

A common consequence of rapid and uncontrollable urbanization is Urban Heat Island (UHI). It occurs due to the negligence on climate behaviour which degrades the quality of urban climate condition. Recently, addressing urban climate in urban planning through mapping has received worldwide attention. Therefore, the need to identify the significant factors is a must. This study aims to analyse the relationships between Land Surface Temperature (LST) and two urban parameters namely built-up and green areas. Geographical Information System (GIS) and remote sensing techniques were used to prepare the necessary data layers required for this study. The built-up and the green areas were extracted from Landsat 8 satellite images either using the Normalized Difference Built-Up Index (NDBI), Normalized Difference Vegetation Index (NDVI) or Modified Normalize Difference Water Index (MNDWI) algorithms, while the mono-window algorithm was used to retrieve the Land Surface Temperature (LST). Correlation analysis and Multi-Linear Regression (MLR) model were applied to quantitatively analyse the effects of the urban parameters. From the study, it was found that the two urban parameters have significant effects on the LST of Kuala Lumpur City. The built-up areas have greater influence on the LST as compared to the green areas. The built-up areas tend to increase the LST while green areas especially the densely vegetated areas help to reduce the LST within an urban areas. Future studies should focus on improving existing urban climatic model by including other urban parameters.

Author(s):  
R. Bala ◽  
R. Prasad ◽  
V. P. Yadav ◽  
J. Sharma

<p><strong>Abstract.</strong> The temperature rise in urban areas has become a major environmental concern. Hence, the study of Land surface temperature (LST) in urban areas is important to understand the behaviour of different land covers on temperature. Relation of LST with different indices is required to study LST in urban areas using satellite data. The present study focuses on the relation of LST with the selected indices based on different land cover using Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) data in Varanasi, India. A regression analysis was done between LST and Normalized Difference Vegetation index (NDVI), Normalized Difference Soil Index (NDSI), Normalized Difference Built-up Index (NDBI) and Normalized Difference Water Index (NDWI). The non-linear relations of LST with NDVI and NDWI were observed, whereas NDBI and NDSI were found to show positive linear relation with LST. The correlation of LST with NDSI was found better than NDBI. Further analysis was done by choosing 25 pure pixels from each land cover of water, vegetation, bare soil and urban areas to determine the behaviour of indices on LST for each land cover. The investigation shows that NDSI and NDBI can be effectively used for study of LST in urban areas. However, NDBI can explain urban LST in the better way for the regions without water body.</p>


2019 ◽  
Vol 11 (24) ◽  
pp. 7056 ◽  
Author(s):  
Jae-Ik Kim ◽  
Myung-Jin Jun ◽  
Chang-Hwan Yeo ◽  
Ki-Hyun Kwon ◽  
Jun Yong Hyun

This study investigated how changes in land surface temperature (LST) during 2004 and 2014 were attributable to zoning-based land use type in Seoul in association with the building coverage ratio (BCR), floor area ratio (FAR), and a normalized difference vegetation index (NDVI). We retrieved LSTs and NDVI data from satellite images, Landsat TM 5 for 2004 and Landsat 8 TIRS for 2014 and combined them with parcel-based land use information, which contained data on BCR, FAR, and zoning-based land use type. The descriptive analysis results showed a rise in LST for the low- and medium-density residential land, whereas significant LST decreases were found in high-density residential, semi-residential, and commercial areas over the time period. Statistical results further supported these findings, yielding statistically significant negative coefficient values for all interaction variables between higher-density land use types and a year-based dummy variable. The findings appear to be related to residential densification involving the provision of more high-rise apartment complexes and government efforts to secure more parks and green spaces through urban redevelopment and renewal projects.


2020 ◽  
Vol 3 (2) ◽  
pp. a35-43
Author(s):  
MD. NAZMUL HAQUE ◽  
NOWRIN RAHMAN KHANAM ◽  
MEHNAZ NANJIBA

Land surface temperature and vegetation cover are two important parameters to evaluate the climate change and environmental condition. The current study is carried out in respect of monitoring the changing phenomena of climate and environment. The area selected to conduct the study was ward number 1, 2 and 3 of Khulna City Corporation), from the third largest city of Bangladesh. This study is corresponding through the calculation of Land Surface Temperature (LST) and Normalized Differential Vegetation Index (NDVI) for two different years, 2010 and 2018. LST and NDVI are observed to realize the association between surface temperature and amount of vegetation. With the help of ArcGIS 10.5, LST and NDVI calculations are done using Landsat 5 Thermal Mapper, Landsat 8 Operational Land Imager and Thermal Infrared Sensor images (for 2010 and 2018, respectively) collected from USGS Earth Explorer. The findings of the study specify that the highest temperature in 2018 is 32.5˚C in ward 2 and in 2010 it was 27.5˚C in ward 3, though the overall vegetation amount decreased in 2018, About 18, 900 square meter of very low canopy area has increased in ward 3 from the period of 2010 to 2018 and in the same time 35, 100 square meter of low canopy area has been decreased for the overall study area. However, parts of the study area of ward no. 3 had faced a significant increase in vegetation cover which is the cause of low temperature compared to ward 1 and 2 in 2018.


Author(s):  
Ibra Lebbe Mohamed Zahir

Land Surface Temperature is a one of the key variable of Global climate changes and model which estimate radiating budget in heat balance as control of climate model. It is a major influenced factor by the ability of the surface emissivity. In this study, were used Landsat 8 satellite image that have Operational Land Imager and Thermal Infrared Sensor to calculate Land Surface Temperature through geospatial technology over Ampara district, Sri Lanka. The Land Surface Temperature was estimated with respect to Land Surface Emissivity and Normalized Difference Vegetation Index values determined from the Red and Near Infrared channels. Land Surface Emissivity was processed directly by the thermal Infrared bands. Pixels based calculation were used to effort at LANDSAT 8 images that thermal Band 10 various dates in this study. The results were achievable to compute Normalized Difference Vegetation Index, Land Surface Emissivity, and Land Surface Temperature with applicable manner to compare with land use/ land cover data. It determines and predicts the changes of surface temperature to favorable to decision making process for the society. Study area faces seasonal drought in Sri Lanka, the prediction method that how land can be efficiently used with the present condition. Therefore, the Land Surface Temperature estimation can prove whether new irrigation systems for agricultural activities or can transformed source of energy into useful form that introducing solar hubs for energy production in future.


2020 ◽  
pp. 240
Author(s):  
I Gusti Agung Ayu Rai Asmiwyati ◽  
Anak Agung Gede Sugianthara ◽  
I Nyoman Wardi

The variation of land surface temperature using Landsat 8, case study City of Denpasar. Land cover is an essential signature that is often used to understand interactions between local temperatures and land surfaces. The integration of remote sensing and geographical information system helps to effectively and efficiently extract data for a vast study area. The purpose of this study was to determine the range and distribution of Land Surface Temperature (LST) and the variation among land covers in City of Denpasar using Landsat 8. The City of Denpasar was selected as the representative study area where human population considerably increased high during past decade and thus, has posed a need to understand urban climates mainly for a city which located in a relatively small tropical island. This study shows that trees in mangrove, urban water areas, and paddy fields had lower LST and can be used as an effective means of offsetting the energy-intensive urban heat island effect.


2021 ◽  
Vol 13 (18) ◽  
pp. 3684
Author(s):  
Yingying Ji ◽  
Jiaxin Jin ◽  
Wenfeng Zhan ◽  
Fengsheng Guo ◽  
Tao Yan

Plant phenology is one of the key regulators of ecosystem processes, which are sensitive to environmental change. The acceleration of urbanization in recent years has produced substantial impacts on vegetation phenology over urban areas, such as the local warming induced by the urban heat island effect. However, quantitative contributions of the difference of land surface temperature (LST) between urban and rural (ΔLST) and other factors to the difference of spring phenology (i.e., the start of growing season, SOS) between urban and rural (ΔSOS) were rarely reported. Therefore, the objective of this study is to explore impacts of urbanization on SOS and distinguish corresponding contributions. Using Hangzhou, a typical subtropical metropolis, as the study area, vegetation index-based phenology data (MCD12Q2 and MYD13Q1 EVI) and land surface temperature data (MYD11A2 LST) from 2006–2018 were adopted to analyze the urban–rural gradient in phenology characteristics through buffers. Furthermore, we exploratively quantified the contributions of the ΔLST to the ΔSOS based on a temperature contribution separation model. We found that there was a negative coupling between SOS and LST in over 90% of the vegetated areas in Hangzhou. At the sample-point scale, SOS was weakly, but significantly, negatively correlated with LST at the daytime (R2 = 0.2 and p < 0.01 in rural; R2 = 0.14 and p < 0.05 in urban) rather than that at nighttime. Besides, the ΔSOS dominated by the ΔLST contributed more than 70% of the total ΔSOS. We hope this study could help to deepen the understanding of responses of urban ecosystem to intensive human activities.


2018 ◽  
Vol 55 (4C) ◽  
pp. 129
Author(s):  
Nguyen Bac Giang

This paper presents the analysis of the effect of urban green space types on land surface temperature in Hue city. Data are collected with temperature monitoring results from each green space type and the interpretation of surface temperature based on Landsat 8 satellite image data to determine temperatures at different times of the year. Results showed that there was a significant correlation between types of urban green space and the surface temperature. Types of green space with a large area and vegetation indexes have a greater effect on temperature than areas with a smaller green space do. Green space types including forest green space, dedicated green space and agriculture green space have the most effect on the surface temperature. The forest area has the greatest influence on the temperature with a temperature difference of more than 1.6 degrees Celsius at 9:00 in the daytime. Besides, the results extracted from satellite images also show that the area of urban green space going to be reduced makes a contribution to increase the surface temperature of urban areas. The study results have established foundation for planning the green spaces in climate change challenges in Hue City.


Author(s):  
O. Orhan ◽  
M. Yakar

The main purpose of this paper is to investigate multi-temporal land surface temperature (LST) and Normalized Difference Vegetation Index (NDVI) changes of Konya in Turkey using remotely sensed data. Konya is located in the semi-arid central Anatolian region of Turkey and hosts many important wetland sites including Salt Lake. Six images taken by Landsat-5 TM and Landsat 8- OLI satellites were used as the basic data source. These raw images were taken in 1984, 2011 and 2014 intended as long-term and short-term. Firstly, those raw images was corrected radiometric and geometrically within the scope of project. Three mosaic images were obtained by using the full-frame images of Landsat-5 TM / 8- OLI which had been already transformed comparison each other. Then, Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI) maps have been produced to determine the dimension of the drought. The obtained results showed that surface temperature rates in the basin increased about 5°C between 1984 and 2014 as long periods, increased about 2-3°C between 2011and 2014 as short periods. Meteorological data supports the increase in temperature.


2021 ◽  
Vol 52 (4) ◽  
pp. 793-801
Author(s):  
Al-Jbouri & Al-Timimi

Agriculture is the most important and most dependent economic activity and influenced by climatic conditions as the climate elements represented by solar radiation, temperature, wind and relative humidity. Therefore, is necessary that analyze and understand the relationship between climate and agriculture. The aim of this study to assessment the relationship between land surface temperature (LST) and normalized difference vegetation index (NDVI) for three regions of Diyala Governorate in Iraq (Al Muqdadya, Baladrooz, and Baquba) by through using of remote sensing techniques and geographic information system (GIS).The Normalized difference vegetation index NDVI and land surface temperature (LST) were used in two of the Landsat-5 ETM + and Landsat-8 OLI satellite imagery during the years 1999 and 2019.  The results showed that increased in NDVI and decreased in LST for 2019, while for 1999 increased in LST and decreased in NDVI for the three regions. Finally, the regression was used to obtain that correlation between LST and NDVI. It was concluded that the correlation coefficient between NDVI and LST is negative, where the strongest correlation was 0.76 for Baquba and weakest correlation was 0.55 for Muqdadyia.


2021 ◽  
Vol 333 ◽  
pp. 02008
Author(s):  
Anna Gosteva ◽  
Sofia Ilina ◽  
Aleksandra Matuzko

The replacement of the natural landscape by artificial environment has led to changes in the ecosystem and physical properties of the surface, such as heat storage capacity, and thermal conductivity properties. These changes increase the difficulty of heat transfer between urban areas and the environment. Land surface temperature (LST) images from various satellites are widely used to represent urban thermal environments, which are more convenient and intuitive way. LST maps provide full spatial coverage, which distinguishes them from air temperature data obtained from meteorological stations. The study of LST according to the Landsat 8 data of Krasnoyarsk city over the past 10 years allowed the authors to talk about the observation of constant seasonal urban heat islands (UHI). For a more detailed consideration of the urban environment, this study further considers urban landscapes, thus the idea of local climate zone (LCZ) is introduced to study these diverse impacts in addition to the traditional map of LST. And analysis of the interaction of UHI and LCZ.


Sign in / Sign up

Export Citation Format

Share Document