scholarly journals THE USE OF DEEP LEARNING IN REMOTE SENSING FOR MAPPING IMPERVIOUS SURFACE: A REVIEW PAPER

Author(s):  
S. Mahyoub ◽  
H. Rhinane ◽  
M. Mansour ◽  
A. Fadil ◽  
Y. Akensous ◽  
...  

Abstract. In recent years, deep convolutional neural networks (CNNs) algorithms have demonstrated outstanding performance in a wide range of remote sensing applications, including image classification, image detection, and image segmentation. Urban development, as defined by urban expansion, mapping impervious surfaces, and built-up areas, is one of these fascinating issues. The goal of this research is to explore at and summarize the deep learning approaches used in urbanization. In addition, several of these methods are highlighted in order to provide a comprehensive overview and comprehension of them, as well as their pros and downsides.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Venkata Dasu Marri ◽  
Veera Narayana Reddy P. ◽  
Chandra Mohan Reddy S.

Purpose Image classification is a fundamental form of digital image processing in which pixels are labeled into one of the object classes present in the image. Multispectral image classification is a challenging task due to complexities associated with the images captured by satellites. Accurate image classification is highly essential in remote sensing applications. However, existing machine learning and deep learning–based classification methods could not provide desired accuracy. The purpose of this paper is to classify the objects in the satellite image with greater accuracy. Design/methodology/approach This paper proposes a deep learning-based automated method for classifying multispectral images. The central issue of this work is that data sets collected from public databases are first divided into a number of patches and their features are extracted. The features extracted from patches are then concatenated before a classification method is used to classify the objects in the image. Findings The performance of proposed modified velocity-based colliding bodies optimization method is compared with existing methods in terms of type-1 measures such as sensitivity, specificity, accuracy, net present value, F1 Score and Matthews correlation coefficient and type 2 measures such as false discovery rate and false positive rate. The statistical results obtained from the proposed method show better performance than existing methods. Originality/value In this work, multispectral image classification accuracy is improved with an optimization algorithm called modified velocity-based colliding bodies optimization.


2020 ◽  
pp. 35
Author(s):  
M. Campos-Taberner ◽  
F.J. García-Haro ◽  
B. Martínez ◽  
M.A. Gilabert

<p class="p1">The use of deep learning techniques for remote sensing applications has recently increased. These algorithms have proven to be successful in estimation of parameters and classification of images. However, little effort has been made to make them understandable, leading to their implementation as “black boxes”. This work aims to evaluate the performance and clarify the operation of a deep learning algorithm, based on a bi-directional recurrent network of long short-term memory (2-BiLSTM). The land use classification in the Valencian Community based on Sentinel-2 image time series in the framework of the common agricultural policy (CAP) is used as an example. It is verified that the accuracy of the deep learning techniques is superior (98.6 % overall success) to that other algorithms such as decision trees (DT), k-nearest neighbors (k-NN), neural networks (NN), support vector machines (SVM) and random forests (RF). The performance of the classifier has been studied as a function of time and of the predictors used. It is concluded that, in the study area, the most relevant information used by the network in the classification are the images corresponding to summer and the spectral and spatial information derived from the red and near infrared bands. These results open the door to new studies in the field of the explainable deep learning in remote sensing applications.</p>


2019 ◽  
Vol 152 ◽  
pp. 166-177 ◽  
Author(s):  
Lei Ma ◽  
Yu Liu ◽  
Xueliang Zhang ◽  
Yuanxin Ye ◽  
Gaofei Yin ◽  
...  

2005 ◽  
Vol 11 (11) ◽  
pp. 1339-1356 ◽  
Author(s):  
Adam L. Webster ◽  
William H. Semke

The ability to eliminate, or effectively control, vibration in remote sensing applications is critical. Any perturbations of an imaging system are greatly magnified over the hundreds of kilometers from the orbiting space platform to the Earth's surface. Space platforms, such as the International Space Station, are not as predictable or stable as many other spacecraft. Therefore, an effective vibration isolation and/or absorber system is needed that operates over a wide range of excitation frequencies. A passive system is also preferred to reduce the resources required, as well as to provide a reliable and self-contained system. To accomplish these goals, a vibration amplitude limiting system has been developed that uses both vibration isolation and absorber components. Viscoelastic structural elements that act as both a spring and a damper in a single element are implemented in the design. This configuration also demonstrates a favorable frequencydependent response and produces a system with improved dynamic behavior compared to conventional spring and damper designs. This rotation limiting vibration system has been designed and analyzed for use in digital remote sensing imaging. The transmissibility and the ground jitter associated with the system are determined. A summary of these results will be presented along with a comparison to a more conventional vibration isolation/absorber system.


Author(s):  
Afshan Saleem

Hyper-spectral images contain a wide range of bands or wavelength due to which they are rich in information. These images are taken by specialized sensors and then investigated through various supervised or unsupervised learning algorithms. Data that is acquired by hyperspectral image contain plenty of information hence it can be used in applications where materials can be analyzed keenly, even the smallest difference can be detected on the basis of spectral signature i.e. remote sensing applications. In order to retrieve information about the concerned area, the image has to be grouped in different segments and can be analyzed conveniently. In this way, only concerned portions of the image can be studied that have relevant information and the rest that do not have any information can be discarded. Image segmentation can be done to assort all pixels in groups. Many methods can be used for this purpose but in this paper, we discussed k means clustering to assort data in AVIRIS cuprite, AVIRIS Muffet and Rosis Pavia in order to calculate the number of regions in each image and retrieved information of 1st, 10th and100th band. Clustering has been done easily and efficiently as k means algorithm is the easiest approach to retrieve information.


2020 ◽  
Vol 8 (6) ◽  
pp. 391 ◽  
Author(s):  
Luis Pedro Almeida ◽  
Rafael Almar

In this Special Issue “Application of Remote Sensing Methods to Monitor Coastal Zones” nine original research papers were published, with topics covering a wide range of ranging of remote sensing applications including coastal topography, bathymetry, land cover, and nearshore hydrodynamics [...]


Author(s):  
P. J. Soto ◽  
G. A. O. P. Costa ◽  
R. Q. Feitosa ◽  
P. N. Happ ◽  
M. X. Ortega ◽  
...  

Abstract. Deep learning classification models require large amounts of labeled training data to perform properly, but the production of reference data for most Earth observation applications is a labor intensive, costly process. In that sense, transfer learning is an option to mitigate the demand for labeled data. In many remote sensing applications, however, the accuracy of a deep learning-based classification model trained with a specific dataset drops significantly when it is tested on a different dataset, even after fine-tuning. In general, this behavior can be credited to the domain shift phenomenon. In remote sensing applications, domain shift can be associated with changes in the environmental conditions during the acquisition of new data, variations of objects’ appearances, geographical variability and different sensor properties, among other aspects. In recent years, deep learning-based domain adaptation techniques have been used to alleviate the domain shift problem. Recent improvements in domain adaptation technology rely on techniques based on Generative Adversarial Networks (GANs), such as the Cycle-Consistent Generative Adversarial Network (CycleGAN), which adapts images across different domains by learning nonlinear mapping functions between the domains. In this work, we exploit the CycleGAN approach for domain adaptation in a particular change detection application, namely, deforestation detection in the Amazon forest. Experimental results indicate that the proposed approach is capable of alleviating the effects associated with domain shift in the context of the target application.


2021 ◽  
Vol 13 (20) ◽  
pp. 4040
Author(s):  
Jaturong Som-ard ◽  
Clement Atzberger ◽  
Emma Izquierdo-Verdiguier ◽  
Francesco Vuolo ◽  
Markus Immitzer

A large number of studies have been published addressing sugarcane management and monitoring to increase productivity and production as well as to better understand landscape dynamics and environmental threats. Building on existing reviews which mainly focused on the crop’s spectral behavior, a comprehensive review is provided which considers the progress made using novel data analysis techniques and improved data sources. To complement the available reviews, and to make the large body of research more easily accessible for both researchers and practitioners, in this review (i) we summarized remote sensing applications from 1981 to 2020, (ii) discussed key strengths and weaknesses of remote sensing approaches in the sugarcane context, and (iii) described the challenges and opportunities for future earth observation (EO)-based sugarcane monitoring and management. More than one hundred scientific studies were assessed regarding sugarcane mapping (52 papers), crop growth anomaly detection (11 papers), health monitoring (14 papers), and yield estimation (30 papers). The articles demonstrate that decametric satellite sensors such as Landsat and Sentinel-2 enable a reliable, cost-efficient, and timely mapping and monitoring of sugarcane by overcoming the ground sampling distance (GSD)-related limitations of coarser hectometric resolution data, while offering rich spectral information in the frequently recorded data. The Sentinel-2 constellation in particular provides fine spatial resolution at 10 m and high revisit frequency to support sugarcane management and other applications over large areas. For very small areas, and in particular for up-scaling and calibration purposes, unmanned aerial vehicles (UAV) are also useful. Multi-temporal and multi-source data, together with powerful machine learning approaches such as the random forest (RF) algorithm, are key to providing efficient monitoring and mapping of sugarcane growth, health, and yield. A number of difficulties for sugarcane monitoring and mapping were identified that are also well known for other crops. Those difficulties relate mainly to the often (i) time consuming pre-processing of optical time series to cope with atmospheric perturbations and cloud coverage, (ii) the still important lack of analysis-ready-data (ARD), (iii) the diversity of environmental and growth conditions—even for a given country—under which sugarcane is grown, superimposing non-crop related radiometric information on the observed sugarcane crop, and (iv) the general ill-posedness of retrieval and classification approaches which adds ambiguity to the derived information.


Sign in / Sign up

Export Citation Format

Share Document