scholarly journals A Methodology for Predicting Aggregate Flight Departure Delays in Airports Based on Supervised Learning

2020 ◽  
Vol 12 (7) ◽  
pp. 2749 ◽  
Author(s):  
Bojia Ye ◽  
Bo Liu ◽  
Yong Tian ◽  
Lili Wan

This paper proposes a new methodology for predicting aggregate flight departure delays in airports by exploring supervised learning methods. Individual flight data and meteorological information were processed to obtain four types of airport-related aggregate characteristics for prediction modeling. The expected departure delays in airports is selected as the prediction target while four popular supervised learning methods: multiple linear regression, a support vector machine, extremely randomized trees and LightGBM are investigated to improve the predictability and accuracy of the model. The proposed model is trained and validated using operational data from March 2017 to February 2018 for the Nanjing Lukou International Airport in China. The results show that for a 1-h forecast horizon, the LightGBM model provides the best result, giving a 0.8655 accuracy rate with a 6.65 min mean absolute error, which is 1.83 min less than results from previous research. The importance of aggregate characteristics and example validation are also studied.

2015 ◽  
Vol 76 (13) ◽  
Author(s):  
Siraj Muhammed Pandhiani ◽  
Ani Shabri

In this study, new hybrid model is developed by integrating two models, the discrete wavelet transform and least square support vector machine (WLSSVM) model. The hybrid model is then used to measure for monthly stream flow forecasting for two major rivers in Pakistan. The monthly stream flow forecasting results are obtained by applying this model individually to forecast the rivers flow data of the Indus River and Neelum Rivers. The root mean square error (RMSE), mean absolute error (MAE) and the correlation (R) statistics are used for evaluating the accuracy of the WLSSVM, the proposed model. The results are compared with the results obtained through LSSVM. The outcome of such comparison shows that WLSSVM model is more accurate and efficient than LSSVM.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3719
Author(s):  
Aoxin Ni ◽  
Arian Azarang ◽  
Nasser Kehtarnavaz

The interest in contactless or remote heart rate measurement has been steadily growing in healthcare and sports applications. Contactless methods involve the utilization of a video camera and image processing algorithms. Recently, deep learning methods have been used to improve the performance of conventional contactless methods for heart rate measurement. After providing a review of the related literature, a comparison of the deep learning methods whose codes are publicly available is conducted in this paper. The public domain UBFC dataset is used to compare the performance of these deep learning methods for heart rate measurement. The results obtained show that the deep learning method PhysNet generates the best heart rate measurement outcome among these methods, with a mean absolute error value of 2.57 beats per minute and a mean square error value of 7.56 beats per minute.


2021 ◽  
Vol 15 (4) ◽  
pp. 18-30
Author(s):  
Om Prakash Samantray ◽  
Satya Narayan Tripathy

There are several malware detection techniques available that are based on a signature-based approach. This approach can detect known malware very effectively but sometimes may fail to detect unknown or zero-day attacks. In this article, the authors have proposed a malware detection model that uses operation codes of malicious and benign executables as the feature. The proposed model uses opcode extract and count (OPEC) algorithm to prepare the opcode feature vector for the experiment. Most relevant features are selected using extra tree classifier feature selection technique and then passed through several supervised learning algorithms like support vector machine, naive bayes, decision tree, random forest, logistic regression, and k-nearest neighbour to build classification models for malware detection. The proposed model has achieved a detection accuracy of 98.7%, which makes this model better than many of the similar works discussed in the literature.


2012 ◽  
Vol 11 (04) ◽  
pp. 857-874 ◽  
Author(s):  
JIE CAO ◽  
HONGKE LU ◽  
WEIWEI WANG ◽  
JIAN WANG

Five-category loan classification (FCLC) is an international financial regulation approach. Recently, the application and implementation of FCLC in the Chinese microfinance bank has mostly relied on subjective judgment, and it is difficult to control and lower loan risk. In view of this, this paper is dedicated to researching and solving this problem by constructing the FCLC model based on improved particle-swarm optimization (PSO) and the multiclass, least-square, support-vector machine (LS-SVM). First, LS-SVM is the extension of SVM, which is proposed to achieve multiclass classification. Then, improved PSO is employed to determine the parameters of multiclass LS-SVM for improving classification accuracy. Finally, some experiments are carried out based on rural credit cooperative data to demonstrate the performance of our proposed model. The results show that the proposed model makes a distinct improvement in the accuracy rate compared with one-vs.-one (1-v-1) LS-SVM, one-vs.-rest (1-v-r) LS-SVM, 1-v-1 SVM, and 1-v-r SVM. In addition, it is an effective tool in solving the problem of loan-risk rating.


2020 ◽  
Vol 8 (5) ◽  
pp. 3516-3520

The main objective of this research is to predict crop yields based on cultivation area, Rainfall and maximum and minimum temperature data. It will help our Indian farmers to predict crop yielding according to the environment conditions. Nowadays, Machine learning based crop yield prediction is very popular than the traditional models because of its accuracy. In this paper, linear regression, Support Vector Regression, Decision Tree and Random forest is compared with XG Boost algorithm. The above mentioned algorithms are compared based on R2 , Minimum Square Error and Minimum Absolute Error. The dataset is prepared from the data.gov.in site for the year from 2000 to 2014. The data for 4 south Indian states Andhra Pradesh, Karnataka, Tamil Nadu and Kerala data alone is taken since all these states has same climatic conditions. The proposed model in this paper based on XG Boost is showing much better results than other models. In XG Boost R2 is 0.9391 which is the best when compared with other models.


2018 ◽  
Vol 7 (4.19) ◽  
pp. 788
Author(s):  
Eman S. Al-Shamery ◽  
Hussein A. Al – Gashamy

The control of inflation rate is at the core of monetary policy making. Therefore, there is very great interest in reliable inflation forecasts by central bankers to help them achieve this aim. The aim of this investigation has been to forecast inflation in case of the United States as accurately as possible. This paper proposes a new forecasting model called Sequential Minimal Organization (SMOreg-3passes) for regression predictions. SMOreg-3passes consists of four steps, they are technical indicators generation, feature selection, normalization regression and regression forecaster. The proposed model evaluated using two regression measurements (Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)). Our evidence from the SMOreg-3passes model suggests that the chronology of time series has great influence on future forecasting and the error in forecasting the past has an exponential impact on the current data. The results showed that the proposed model outperformed the traditional SMO and Multiple Layer Perception (MLP) methods. 


Seismic tremors everywhere throughout the globe have been a noteworthy reason for decimation and death toll and property. The following context expects to recognize earthquakes at a beginning time utilizing AI. This will help individuals and salvage groups to make their errand simpler. The information in this manner comprises of these seismic acoustic signals and the time of failure. The model is then prepared utilizing the CatBoost model and the utilization of Support Vector Machines. This will help foresee the time at which a Seismic tremor may happen. CatBoost Regression Algorithm gives a Mean Absolute Error of about 1.860. The Cross Validation (CV) Score for the Support Vector Machine (SVM) approach is -2.1651. The datasets metrics are not reliable on any outer parameter in this manner the variety of exactness is constrained, and high accuracy is accomplished.


Author(s):  
A. R. Nemati ◽  
M. Zakeri Niri ◽  
S. Moazami

Simulation of rainfall-runoff process is one of the most important research fields in hydrology and water resources. Generally, the models used in this section are divided into two conceptual and data-driven categories. In this study, a conceptual model and two data-driven models have been used to simulate rainfall-runoff process in Tamer sub-catchment located in Gorganroud watershed in Iran. The conceptual model used is HEC-HMS, and data-driven models are neural network model of multi-layer Perceptron (MLP) and support vector regression (SVR). In addition to simulation of rainfall-runoff process using the recorded land precipitation, the performance of four satellite algorithms of precipitation, that is, CMORPH, PERSIANN, TRMM 3B42 and TRMM 3B42RT were studied. In simulation of rainfall-runoff process, calibration and accuracy of the models were done based on satellite data. The results of the research based on three criteria of correlation coefficient (R), root mean square error (RMSE) and mean absolute error (MAE) showed that in this part the two models of SVR and MLP could perform the simulation of runoff in a relatively appropriate way, but in simulation of the maximum values of the flow, the error of models increased.


Sign in / Sign up

Export Citation Format

Share Document